Knowledge graph-enhanced molecular contrastive learning with functional prompt

[1]  M. Rosales-Hernández,et al.  New compounds from heterocyclic amines scaffold with multitarget inhibitory activity on Aβ aggregation, AChE, and BACE1 in the Alzheimer disease , 2022, PloS one.

[2]  G. W. Vuister,et al.  Fragment-Based Drug Discovery by NMR. Where Are the Successes and Where can It Be Improved? , 2022, Frontiers in Molecular Biosciences.

[3]  Shengchao Liu,et al.  Pre-training Molecular Graph Representation with 3D Geometry , 2021, ICLR.

[4]  Fei Huang,et al.  Learning to Ask for Data-Efficient Event Argument Extraction , 2021, AAAI.

[5]  Gorka Labaka,et al.  Label Verbalization and Entailment for Effective Zero and Few-Shot Relation Extraction , 2021, EMNLP.

[6]  Hiroaki Hayashi,et al.  Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in Natural Language Processing , 2021, ACM Comput. Surv..

[7]  Hua Wu,et al.  Geometry-enhanced molecular representation learning for property prediction , 2021, Nature Machine Intelligence.

[8]  Jiayu Zhou,et al.  MoCL: Data-driven Molecular Fingerprint via Knowledge-aware Contrastive Learning from Molecular Graph , 2021, KDD.

[9]  Amir Barati Farimani,et al.  Molecular contrastive learning of representations via graph neural networks , 2021, Nature Machine Intelligence.

[10]  F. Jourdan,et al.  FORUM: building a Knowledge Graph from public databases and scientific literature to extract associations between chemicals and diseases , 2021, bioRxiv.

[11]  Ian Horrocks,et al.  OWL2Vec*: embedding of OWL ontologies , 2020, Machine Learning.

[12]  P. Ertl,et al.  The Most Common Functional Groups in Bioactive Molecules and How Their Popularity has Evolved Over Time. , 2020, Journal of medicinal chemistry.

[13]  Xiangxiang Zeng,et al.  KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction , 2020, IJCAI.

[14]  Sarit Kraus,et al.  Constrained Policy Improvement for Efficient Reinforcement Learning , 2020, IJCAI.

[15]  Phillip Isola,et al.  Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere , 2020, ICML.

[16]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[17]  J. Leskovec,et al.  Strategies for Pre-training Graph Neural Networks , 2019, ICLR.

[18]  Jamie Munro,et al.  Trends in clinical success rates and therapeutic focus , 2019, Nature Reviews Drug Discovery.

[19]  Regina Barzilay,et al.  Are Learned Molecular Representations Ready For Prime Time? , 2019, ArXiv.

[20]  Evan Bolton,et al.  PubChem 2019 update: improved access to chemical data , 2018, Nucleic Acids Res..

[21]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[22]  Jinfeng Yi,et al.  Edge Attention-based Multi-Relational Graph Convolutional Networks , 2018, ArXiv.

[23]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[24]  Vijay S. Pande,et al.  MoleculeNet: a benchmark for molecular machine learning , 2017, Chemical science.

[25]  Vijay S. Pande,et al.  Computational Modeling of β-Secretase 1 (BACE-1) Inhibitors Using Ligand Based Approaches , 2016, J. Chem. Inf. Model..

[26]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[27]  Geoffrey E. Hinton,et al.  Layer Normalization , 2016, ArXiv.

[28]  Peer Bork,et al.  The SIDER database of drugs and side effects , 2015, Nucleic Acids Res..

[29]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[30]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[31]  David L. Mobley,et al.  FreeSolv: a database of experimental and calculated hydration free energies, with input files , 2014, Journal of Computer-Aided Molecular Design.

[32]  Michael Hay,et al.  Clinical development success rates for investigational drugs , 2014, Nature Biotechnology.

[33]  John P. Overington,et al.  ChEMBL: a large-scale bioactivity database for drug discovery , 2011, Nucleic Acids Res..

[34]  Dirk P. Kroese,et al.  Kernel density estimation via diffusion , 2010, 1011.2602.

[35]  T. Hartung Toxicology for the twenty-first century , 2009, Nature.

[36]  Lorenz C. Blum,et al.  970 million druglike small molecules for virtual screening in the chemical universe database GDB-13. , 2009, Journal of the American Chemical Society.

[37]  Kaspar Riesen,et al.  IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning , 2008, SSPR/SPR.

[38]  P. Gunasekaran,et al.  Toxicity assessment and microbial degradation of azo dyes. , 2006, Indian journal of experimental biology.

[39]  G. Bemis,et al.  The properties of known drugs. 1. Molecular frameworks. , 1996, Journal of medicinal chemistry.

[40]  Laurens van der Maaten,et al.  Accelerating t-SNE using tree-based algorithms , 2014, J. Mach. Learn. Res..

[41]  R. Fitzpatrick Haz-Map: information on hazardous chemicals and occupational diseases. , 2004, Medical reference services quarterly.