Non-stoichiometry in Ca2Al2SiO7 enabling mixed-valent europium toward ratiometric temperature sensing

[1]  Mengmeng Shang,et al.  An abnormal yellow emission and temperature-sensitive properties for perovskite-type Ca2MgWO6 phosphor via cation substitution and energy transfer , 2019, Journal of Luminescence.

[2]  Y. Huang,et al.  Multi-site occupancies of Eu2+ in Ca6BaP4O17 and their potential optical thermometric applications , 2019, Chemical Engineering Journal.

[3]  L. Seijo,et al.  Direct Evidence of Intervalence Charge-Transfer States of Eu-Doped Luminescent Materials. , 2019, The journal of physical chemistry letters.

[4]  Ping Huang,et al.  Unraveling the Electronic Structures of Neodymium in LiLuF4 Nanocrystals for Ratiometric Temperature Sensing , 2019, Advanced science.

[5]  Yan Huang,et al.  Li4SrCa(SiO4)2:Eu2+: A Potential Temperature Sensor with Unique Optical Thermometric Properties. , 2019, ACS applied materials & interfaces.

[6]  Yuansheng Wang,et al.  Heating-induced abnormal increase in Yb3+ excited state lifetime and its potential application in lifetime luminescence nanothermometry , 2019, Inorganic Chemistry Frontiers.

[7]  Xinguo Zhang,et al.  A ratiometric optical thermometer with high sensitivity and superior signal discriminability based on Na3Sc2P3O12: Eu2+, Mn2+ thermochromic phosphor , 2019, Chemical Engineering Journal.

[8]  Y. Gao,et al.  A novel high-sensitive upconversion thermometry strategy: Utilizing synergistic effect of dual-wavelength lasers excitation to manipulate electron thermal distribution , 2019, Sensors and Actuators B: Chemical.

[9]  Ting Yang,et al.  Temperature sensitive cross relaxation between Er3+ ions in laminated hosts: a novel mechanism for thermochromic upconversion and high performance thermometry , 2018 .

[10]  Y. Gao,et al.  Broadening the Valid Temperature Range of Optical Thermometry Through Dual-mode Design , 2018 .

[11]  Chongfeng Guo,et al.  Self-calibrated optical thermometer LuNbO4:Pr3+/Tb3+ based on intervalence charge transfer transitions , 2018 .

[12]  Y. Gao,et al.  CsPbBr3/EuPO4 dual-phase devitrified glass for highly sensitive self-calibrating optical thermometry , 2018 .

[13]  Z. Ji,et al.  A review on nanostructured glass ceramics for promising application in optical thermometry , 2018, Journal of Alloys and Compounds.

[14]  F. Huang,et al.  Strategy design for ratiometric luminescence thermometry: circumventing the limitation of thermally coupled levels , 2018 .

[15]  Haiquan Su,et al.  Inherently Eu2+/Eu3+ Codoped Sc2O3 Nanoparticles as High‐Performance Nanothermometers , 2018, Advanced materials.

[16]  J. Yu,et al.  Synthesis of Er(III)/Yb(III)-doped BiF3 upconversion nanoparticles for use in optical thermometry , 2018, Microchimica Acta.

[17]  F. Huang,et al.  Towards ultra-high sensitive colorimetric nanothermometry: Constructing thermal coupling channel for electronically independent levels , 2018 .

[18]  F. Huang,et al.  Sn 2+ /Mn 2+ codoped strontium phosphate (Sr 2 P 2 O 7 ) phosphor for high temperature optical thermometry , 2018 .

[19]  Z. Xia,et al.  Near UV-pumped yellow-emitting Sr9MgLi(PO4)7:Eu2+ phosphor for white-light LEDs , 2018, Science China Materials.

[20]  R. Xie,et al.  Achieving High Quantum Efficiency Narrow-Band β-Sialon:Eu2+ Phosphors for High-Brightness LCD Backlights by Reducing the Eu3+ Luminescence Killer , 2017 .

[21]  Hai Guo,et al.  Cr3+-doped Bi2Ga4O9-Bi2Al4O9 solid-solution phosphors: crystal-field modulation and lifetime-based temperature sensing. , 2017, Optics letters.

[22]  P. Glatzel,et al.  Oxidation and Luminescence Quenching of Europium in BaMgAl10O17 Blue Phosphors , 2017 .

[23]  P. Dorenbos,et al.  Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6 , 2017 .

[24]  Daqin Chen,et al.  Eu2+/Eu3+ dual-emitting glass ceramic for self-calibrated optical thermometry , 2017 .

[25]  F. Huang,et al.  Intervalence charge transfer state interfered Pr3+ luminescence: A novel strategy for high sensitive optical thermometry , 2017 .

[26]  J. Yu,et al.  Tunable color upconverison emissions in erbium(III)-doped BiOCl microplates for simultaneous thermometry and optical heating , 2017, Microchimica Acta.

[27]  J. Ueda,et al.  Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr3+-Doped Bismuth-Based Gallate Host , 2016 .

[28]  F. Huang,et al.  A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States , 2016 .

[29]  Daqin Chen,et al.  Highly Sensitive Dual-Phase Nanoglass-Ceramics Self-Calibrated Optical Thermometer. , 2016, Analytical chemistry.

[30]  Xiaohong Yan,et al.  Optical temperature sensing of rare-earth ion doped phosphors , 2015 .

[31]  Zhiyu Wang,et al.  Dual‐Emitting MOF⊃Dye Composite for Ratiometric Temperature Sensing , 2015, Advanced materials.

[32]  M. Valerio,et al.  Structural and optical characterizations of Ca2Al2SiO7:Ce3+, Mn2+ nanoparticles produced via a hybrid route , 2014 .

[33]  C. Duan,et al.  Optical thermometry based on upconversion luminescence in Yb3+/Ho3+ co-doped NaLuF4 , 2014 .

[34]  Hua Zhao,et al.  Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4 , 2013 .

[35]  O. Wolfbeis,et al.  Luminescent probes and sensors for temperature. , 2013, Chemical Society reviews.

[36]  Daniel R. Gamelin,et al.  Dual-Emitting Nanoscale Temperature Sensors , 2013 .

[37]  Yangyang He,et al.  Temperature Sensing and In Vivo Imaging by Molybdenum Sensitized Visible Upconversion Luminescence of Rare‐Earth Oxides , 2012, Advanced materials.

[38]  D. Gamelin,et al.  Water-soluble dual-emitting nanocrystals for ratiometric optical thermometry. , 2011, Journal of the American Chemical Society.

[39]  Gregory S Harms,et al.  Upconverting nanoparticles for nanoscale thermometry. , 2011, Angewandte Chemie.

[40]  Satoshi Someya,et al.  Combined two-dimensional velocity and temperature measurements of natural convection using a high-speed camera and temperature-sensitive particles , 2011 .

[41]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[42]  Konstantinos Kontis,et al.  Thermographic Phosphors for High Temperature Measurements: Principles, Current State of the Art and Recent Applications , 2008, Sensors.

[43]  R. Mahiou,et al.  Quenching of Lanthanide Emission by Intervalence Charge Transfer in Crystals Containing Closed Shell Transition Metal Ions , 2007 .

[44]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[45]  C. Wickleder A New Mixed Valent Europium Chloride: Na5Eu7Cl22 , 2002 .

[46]  Claudia Wickleder KEu2Cl6 und K1, 6Eu1, 4Cl5: Zwei neue gemischtvalente EuropiumchlorideProfessor Dieter Naumann zum 60. Geburtstag gewidmet , 2002 .

[47]  B. Viana,et al.  Spectroscopic Properties and Laser Oscillation of Yb:Er:Ca2Al2SiO7 in the 1.55 µm eye-safe range , 1996 .

[48]  K. Prassides Mixed valency systems : applications in chemistry, physics, and biology , 1991 .

[49]  G. Blasse Optical electron transfer between metal ions and its consequences , 1991 .

[50]  C. Struck,et al.  Thermal Quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn Emitting States in La2 O2 S , 1971 .

[51]  R. G. Delosh,et al.  Strong Quenching of Tb3+ Emission by Tb–V Interaction in YPO4–YVO4 , 1970 .