On the performance of binomial and beta-binomial models of demand forecasting for multiple slow-moving inventory items

The paper deals with the lead-time demand forecasting for inventory management of multiple slow-moving items in the case when the available demand history is very short. Two stochastic models of demand are compared: (i) the first based on the ''population-averaged'' binomial distribution of requests (the traditional approach); and (ii) the second based on the beta-binomial probability distribution that assumes that the demand probabilities for the inventory items follow the beta distribution, and employs the Bayesian framework to forecast the lead-time demand (longitudinal statistical approach). The conducted simulation study shows that using the latter model leads to the significant decrease of the holding cost and higher inventory system reliability. Besides, as follows from the simulation results, the beta-binomial demand model is especially useful when the demand probabilities are low and have the U-shaped distribution.

[1]  T. Williams Stock Control with Sporadic and Slow-Moving Demand , 1984 .

[2]  Radivoj Petrovic,et al.  A new adaptive algorithm for determination of stocks in spare parts inventory systems , 1989 .

[3]  D. Collett,et al.  Modeling Binary Data. , 1993 .

[4]  Graham K. Rand,et al.  Logistics of Production and Inventory , 1995 .

[5]  Anil Kukreja,et al.  A model for lumpy demand parts in a multi-location inventory system with transshipments , 2005, Comput. Oper. Res..

[6]  Adel A. Ghobbar,et al.  Evaluation of forecasting methods for intermittent parts demand in the field of aviation: a predictive model , 2003, Comput. Oper. Res..

[7]  Jovan Popovic,et al.  Decision making on stock levels in cases of uncertain demand rate , 1987 .

[8]  Uttarayan Bagchi Modeling lead‐time demand for lumpy demand and variable lead time , 1987 .

[9]  T. Willemain,et al.  A new approach to forecasting intermittent demand for service parts inventories , 2004 .

[10]  R. Watson,et al.  The Effects of Demand-Forecast Fluctuations on Customer Service and Inventory Cost When Demand is Lumpy , 1987 .

[11]  T. P. M. Pakkala,et al.  A Bayesian approach to a dynamic inventory model under an unknown demand distribution , 2002, Comput. Oper. Res..

[12]  F. R. Johnston,et al.  The Variance of Lead-Time Demand , 1986 .

[13]  Tsan-Ming Choi,et al.  Optimal single ordering policy with multiple delivery modes and Bayesian information updates , 2004, Comput. Oper. Res..

[14]  W. J. Kennedy,et al.  An overview of recent literature on spare parts inventories , 2002 .

[15]  Yiannis Gabriel,et al.  Logistics of Production and Inventory , 1993, Handbooks in Operations Research and Management Science.

[16]  Alexandre Dolgui,et al.  Modeling Demand for Inventory Management of Slow-Moving Items in Case of Reporting Errors , 2004 .

[17]  R. Hill Applying Bayesian methodology with a uniform prior to the single period inventory model , 1997 .

[18]  Anders Segerstedt,et al.  Inventory control with variation in lead times, especially when demand is intermittent , 1994 .

[19]  Ramakrishnan Ramanathan,et al.  ABC inventory classification with multiple-criteria using weighted linear optimization , 2006, Comput. Oper. Res..

[20]  Katy S. Azoury Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution , 1985 .

[21]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[22]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[23]  J. D. Croston Forecasting and Stock Control for Intermittent Demands , 1972 .

[24]  Hong Yan,et al.  Information transformation in a supply chain: a simulation study , 2005, Comput. Oper. Res..

[25]  Argyrios Syntetos,et al.  FORECASTING OF INTERMITTENT DEMAND , 2001 .

[26]  H. Scarf Bayes Solutions of the Statistical Inventory Problem , 1959 .

[27]  Averill M. Law,et al.  Simulation Modeling and Analysis , 1982 .

[28]  William J. Stevenson,et al.  REORDER‐POINT MODELS WITH DISCRETE PROBABILITY DISTRIBUTIONS , 1983 .

[29]  Ralph D. Snyder,et al.  Control of inventories with intermittent demand , 1989 .

[30]  Rommert Dekker,et al.  Inventory control of spare parts using a Bayesian approach: A case study , 1999, Eur. J. Oper. Res..

[31]  Argyrios Syntetos Forecasting of intermittent demand: A Thesis submitted for the degree of Doctor of Philosophy, Business School, Buckinghamshire Chilterns University College, Brunel University July 2001 , 2001 .

[32]  James H. Bookbinder,et al.  Estimation of Inventory Re-Order Levels Using the Bootstrap Statistical Procedure , 1989 .

[33]  Min-Chiang Wang,et al.  Estimating reorder points and other management science applications by bootstrap procedure , 1992 .

[34]  J. Bradford,et al.  A Bayesian Approach to the Two-period Style-goods Inventory Problem with Single Replenishment and Heterogeneous Poisson Demands , 1990 .

[35]  T. Willemain,et al.  Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method , 1994 .

[36]  Alexandre Dolgui,et al.  The MPS parameterization under lead time uncertainty , 2004 .

[37]  Jorge Haddock,et al.  The binary bootstrap: inference with autocorrelated binary data , 1993 .

[38]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[39]  Robert L. Winkler,et al.  An Introduction to Bayesian Inference and Decision , 1972 .

[40]  J. Boylan,et al.  Forecasting for Items with Intermittent Demand , 1996 .

[41]  Ram C. Tripathi,et al.  Estimation of parameters in the beta binomial model , 1994 .

[42]  J. Hough,et al.  Demand analysis and inventory control , 1975 .

[43]  Edward A. Silver,et al.  Operations Research in Inventory Management: A Review and Critique , 1981, Oper. Res..

[44]  Steven Nahmias,et al.  Production and operations analysis , 1992 .

[45]  Edward A. Silver,et al.  Bayesian Determination of the Reorder Point of a Slow Moving Item , 1965 .

[46]  Alexandre Dolgui,et al.  Robust Modeling of Consumer Behaviour , 2005 .

[47]  Roger M. Hill Bayesian decision-making in inventory modelling , 1999 .

[48]  Jack P. C. Kleijnen,et al.  Supply chain simulation tools and techniques: a survey , 2005, Int. J. Simul. Process. Model..

[49]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[50]  Roberto Verganti,et al.  A simulation framework for forecasting uncertain lumpy demand , 1999 .

[51]  Dennis V. Lindley,et al.  An Introduction to Bayesian Inference and Decision , 1974 .

[52]  Alexandre Dolgui,et al.  Consumer behavior robust modelling , 2005 .

[53]  Steven Nahmias Production and operations analysis -5/E , 2005 .

[54]  C. R. Mitchell,et al.  An Analysis of Air Force EOQ Data with an Application to Reorder Point Calculation , 1983 .

[55]  Brian G. Kingsman,et al.  Forecasting for the ordering and stock-holding of spare parts , 2004, J. Oper. Res. Soc..

[56]  Jeffery K. Cochran,et al.  Computing small-fleet aircraft availabilities including redundancy and spares , 2002, Comput. Oper. Res..

[57]  Yurij S. Kharin,et al.  Robust estimation and forecasting for beta-mixed hierarchical models of grouped binary data , 2004 .

[58]  A. Dolgui,et al.  A model for supply planning under lead time uncertainty , 2002 .

[59]  Frank Grange Challenges in modeling demand for inventory optimization of slow-moving items , 1998, 1998 Winter Simulation Conference. Proceedings (Cat. No.98CH36274).

[60]  J. B. Ward Determining Reorder Points When Demand is Lumpy , 1978 .

[61]  Carl R. Schultz Forecasting and Inventory Control for Sporadic Demand Under Periodic Review , 1987 .

[62]  A. Vijaya Rao,et al.  A Comment on: Forecasting and Stock Control for Intermittent Demands , 1973 .

[63]  J. G. Skellam A Probability Distribution Derived from the Binomial Distribution by Regarding the Probability of Success as Variable between the Sets of Trials , 1948 .

[64]  Wallace J. Hopp,et al.  Factory physics : foundations of manufacturing management , 1996 .