The Product and the Determinant of Matrices with Entries in a Field

Let us considerK and letA be a matrix overK. The functor−A yields a matrix overK and is defined by: (Def. 2) len(−A) = lenA and width(−A) = widthA and for alli, j such that〈i, j〉 ∈ the indices of A holds(−A)◦ (i, j) =−(A◦ (i, j)). Let us consider K and letA, B be matrices over K. The functorA+B yields a matrix overK and is defined by: (Def. 3) len(A+B) = lenA and width(A+B) = widthA and for alli, j such that〈i, j〉 ∈ the indices of A holds(A+B)◦ (i, j) = (A◦ (i, j))+(B◦ (i, j)). The following propositions are true:

[1]  Czeslaw Bylinski,et al.  Basic Functions and Operations on Functions , 1989 .

[2]  G. Bancerek Introduction to Trees , 1989 .

[3]  Beata Padlewska,et al.  Families of Sets , 1990 .

[4]  Andrzej Trybulec,et al.  Semilattice Operations on Finite Subsets , 1990 .

[5]  Andrzej Trybulec,et al.  Tuples, Projections and Cartesian Products , 1990 .

[6]  Grzegorz Bancerek,et al.  Segments of Natural Numbers and Finite Sequences , 1990 .

[7]  Grzegorz Bancerek,et al.  Curried and Uncurried Functions , 1990 .

[8]  Andrzej Trybulec,et al.  Binary Operations Applied to Functions , 1990 .

[9]  A. Trybulec,et al.  Finite Join and Finite Meet, and Dual Lattices , 1990 .

[10]  G. Bancerek The Fundamental Properties of Natural Numbers , 1990 .

[11]  Czeslaw Bylinski Binary Operations Applied to Finite Sequences , 1990 .

[12]  Wojciech A. Trybulec Pigeon Hole Principle , 1990 .

[13]  Czesław Bylí Finite Sequences and Tuples of Elements of a Non-empty Sets , 1990 .

[14]  Agata Darmochwa,et al.  Topological Spaces and Continuous Functions , 1990 .

[15]  Czeslaw Bylinski,et al.  Subcategories and Products of Categories , 1990 .

[16]  A. Trybulec Domains and Their Cartesian Products , 1990 .

[17]  Wojciech A. Trybulec Binary Operations on Finite Sequences , 1990 .

[18]  A. Trybulec Tarski Grothendieck Set Theory , 1990 .

[19]  Konrad Raczkowski,et al.  Equivalence Relations and Classes of Abstraction 1 , 1990 .

[20]  Wojciech A. Trybulec Vectors in Real Linear Space , 1990 .

[21]  Eugeniusz Kusak Abelian Groups, Fields and Vector Spaces 1 , 1990 .

[22]  Andrzej Trybulec,et al.  A Borsuk Theorem on Homotopy Types , 1991 .

[23]  Katarzyna Jankowska,et al.  Matrices. Abelian Group of Matrices , 1991 .

[24]  Katarzyna Jankowska,et al.  Transpose Matrices and Groups of Permutations , 1991 .

[25]  Grzegorz Bancerek,et al.  Context-Free Grammar - Part 1 , 1991 .

[26]  Zbigniew Karno,et al.  The Lattice of Domains of an Extremally Disconnected Space 1 , 1992 .

[27]  Beata Madras,et al.  Basic Notation of Universal Algebra , 1992 .

[28]  Katarzyna Zawadzka,et al.  Sum and Product of Finite Sequences of Elements of a Field , 1992 .

[29]  Zbigniew Karno Remarks on Special Subsets of Topological Spaces , 1992 .

[30]  Zbigniew Karno,et al.  On Discrete and Almost Discrete Topological Spaces , 1992 .

[31]  J. Harrison Formalized Mathematics , 1996 .

[32]  Czeslaw Bylinski Functions and Their Basic Properties , 2004 .

[33]  Czeslaw Bylinski Functions from a Set to a Set , 2004 .

[34]  Czeslaw Bylinski Some Basic Properties of Sets , 2004 .

[35]  Edmund Woronowicz Relations and Their Basic Properties , 2004 .

[36]  Czesław Bylí,et al.  Binary Operations , 2019, Problem Solving in Mathematics and Beyond.