New Dopant and Host Materials for Blue‐Light‐Emitting Phosphorescent Organic Electroluminescent Devices

[1]  Stephen R. Forrest,et al.  Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices , 2002 .

[2]  Fumio Sato,et al.  Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices , 2003 .

[3]  James R. Sheats,et al.  Manufacturing and commercialization issues in organic electronics , 2004 .

[4]  Gunther Wyszecki,et al.  Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd Edition , 2000 .

[5]  A. van Dijken,et al.  Carbazole compounds as host materials for triplet emitters in organic light-emitting diodes: tuning the HOMO level without influencing the triplet energy in small molecules. , 2004, Journal of the American Chemical Society.

[6]  Stephen R. Forrest,et al.  Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials , 2001 .

[7]  Y. Su,et al.  Highly Efficient Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complexes: Remarkable External Quantum Efficiency Over a Wide Range of Current , 2003 .

[8]  Luisa De Cola,et al.  Tuning iridium(III) phenylpyridine complexes in the "almost blue" region. , 2004, Chemical communications.

[9]  Fumio Sato,et al.  High-efficiency white phosphorescent organic light-emitting devices with greenish-blue and red-emitting layers , 2003 .

[10]  Chin‐Ti Chen,et al.  Optimization of high-performance blue organic light-emitting diodes containing tetraphenylsilane molecular glass materials. , 2002, Journal of the American Chemical Society.

[11]  S. Tokito,et al.  Color Tunable Organic Light‐Emitting Diodes Using Pentafluorophenyl‐Substituted Iridium Complexes , 2003 .

[12]  Akira Tsuboyama,et al.  Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. , 2003, Journal of the American Chemical Society.

[13]  Stephen R. Forrest,et al.  High efficiency single dopant white electrophosphorescent light emitting diodesElectronic supplementary information (ESI) available: emission spectra as a function of doping concentration for 3 in CBP, as well as the absorption and emission spectra of Irppz, CBP and mCP. See http://www.rsc.org/suppd , 2002 .

[14]  S. Forrest,et al.  Nearly 100% internal phosphorescence efficiency in an organic light emitting device , 2001 .

[15]  Stephen R. Forrest,et al.  Blue organic electrophosphorescence using exothermic host–guest energy transfer , 2003 .

[16]  S. Forrest,et al.  Highly efficient phosphorescent emission from organic electroluminescent devices , 1998, Nature.

[17]  Jian Li,et al.  Efficient, deep-blue organic electrophosphorescence by guest charge trapping , 2003 .

[18]  Webster E Howard Better displays with organic films. , 2004, Scientific American.

[19]  Shizuo Tokito,et al.  Highly efficient phosphorescence from organic light-emitting devices with an exciton-block layer , 2001 .

[20]  Stephen R. Forrest,et al.  Efficient Organic Electrophosphorescent White‐Light‐Emitting Device with a Triple Doped Emissive Layer , 2004 .

[21]  S. Stahl,et al.  "Inverse-electron-demand" ligand substitution in palladium(0)-olefin complexes. , 2003, Journal of the American Chemical Society.

[22]  Jian-Ping Chen,et al.  Improved host material design for phosphorescent guest–host systems , 2003 .

[23]  W. Marshall,et al.  New, efficient electroluminescent materials based onorganometallic Ir complexes , 2001 .

[24]  Ray Kurzweil,et al.  Kurzweil vs. Dertouzos , 2001 .

[25]  Stephen R. Forrest,et al.  Measuring the Efficiency of Organic Light‐Emitting Devices , 2003 .

[26]  M. Thompson,et al.  Synthesis and characterization of cyclometalated Ir(III) complexes with pyrazolyl ancillary ligands , 2004 .

[27]  S. Kubota,et al.  1,2,4‐Triazoles. V. Nuclear magnetic resonance study of N‐Methyl derivatives of 1,2,4‐triazoles , 1975 .

[28]  Stephen R. Forrest,et al.  The road to high efficiency organic light emitting devices , 2003 .

[29]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[30]  S. Forrest,et al.  VERY HIGH-EFFICIENCY GREEN ORGANIC LIGHT-EMITTING DEVICES BASED ON ELECTROPHOSPHORESCENCE , 1999 .

[31]  M. Nonoyama Benzo[h]quinolin-10-yl-N Iridium(III) Complexes , 1974 .

[32]  M. Buchanan,et al.  Efficient GaAs light-emitting diodes by photon recycling , 2000 .

[33]  Peipei Sun,et al.  New Iridium Complexes as Highly Efficient Orange–Red Emitters in Organic Light‐Emitting Diodes , 2003 .

[34]  Stephen R. Forrest,et al.  New charge-carrier blocking materials for high efficiency OLEDs , 2003 .

[35]  D Murphy,et al.  Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. , 2001, Journal of the American Chemical Society.

[36]  Stephen Stinson Fine Chemicals Strive To Expand: Fine chemicals producers seek to broaden their involvement in development of drugs and other active ingredients , 2000 .

[37]  R. Friend,et al.  Fluorescence and Phosphorescence in Organic Materials , 2002 .