Photothermal Conversion of Solar Infrared Radiation by Plasmonic Nanoantennas for Photovoltaic-Thermoelectric Hybrid Devices

[1]  Kaiying Wang,et al.  Progress in thermoplasmonics for solar energy applications , 2022, Physics Reports.

[2]  Dong Wang,et al.  A Review on Photothermal Conversion of Solar Energy with Nanomaterials and Nanostructures: From Fundamentals to Applications , 2022, Advanced Sustainable Systems.

[3]  Sangsig Kim,et al.  Performance Prediction of Hybrid Energy Harvesting Devices Using Machine Learning. , 2022, ACS applied materials & interfaces.

[4]  A. Carlo,et al.  Practical development of efficient thermoelectric – Photovoltaic hybrid systems based on wide-gap solar cells , 2021, 2101.08504.

[5]  T. Shimada,et al.  Local enhanced site in surface enhanced infrared absorption with gold nano particle array by Rigorous coupled-wave analysis , 2020, Journal of Physics Communications.

[6]  Han Zhai,et al.  Experimental investigation of novel integrated photovoltaic-thermoelectric hybrid devices with enhanced performance , 2020 .

[7]  John F. Geisz,et al.  Six-junction III–V solar cells with 47.1% conversion efficiency under 143 Suns concentration , 2020 .

[8]  Hee‐eun Song,et al.  Performance of hybrid energy devices consisting of photovoltaic cells and thermoelectric generators. , 2020, ACS applied materials & interfaces.

[9]  B. Cho,et al.  High-Performance Monolithic Photovoltaic–Thermoelectric Hybrid Power Generator Using an Exothermic Reactive Interlayer , 2019, ACS Applied Energy Materials.

[10]  Vladimir D. Miljković,et al.  Solar Transparent Radiators by Optical Nanoantennas. , 2017, Nano letters.

[11]  D. Poulikakos,et al.  A Rapid Response Thin-Film Plasmonic-Thermoelectric Light Detector , 2016, Scientific Reports.

[12]  M. Green,et al.  Energy conversion approaches and materials for high-efficiency photovoltaics. , 2016, Nature materials.

[13]  Xiao Yang,et al.  Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). , 2015, Nano letters.

[14]  U. Schubert,et al.  Survey of Plasmonic Nanoparticles: From Synthesis to Application , 2014 .

[15]  Vladimir D. Miljković,et al.  Nanoplasmon-enabled macroscopic thermal management , 2013, Scientific Reports.

[16]  Choongho Yu,et al.  Lossless hybridization between photovoltaic and thermoelectric devices , 2013, Scientific Reports.

[17]  Li Han,et al.  A novel high-performance photovoltaic–thermoelectric hybrid device , 2011 .

[18]  Vladimir P. Drachev,et al.  Numerical Modeling of Plasmonic Nanoantennas with Realistic 3D Roughness and Distortion , 2011, Sensors.

[19]  L. Hirst,et al.  Fundamental losses in solar cells , 2009 .

[20]  Younan Xia,et al.  Chemical synthesis of novel plasmonic nanoparticles. , 2009, Annual review of physical chemistry.

[21]  H. Fredriksson,et al.  Hole–Mask Colloidal Lithography , 2007 .