Second order total generalized variation for speckle reduction in ultrasound images

Abstract Image denoising is one of the most important issues in image processing. For removing the speckle noise in ultrasound images, researchers have proposed the minimization models based on the total variation (TV), which effectively preserve the sharp edges. But they simultaneously suffer form the undesired artifacts, such as the staircase effect. To overcome this shortcoming, we propose a convex model by combining with the total generalized variation (TGV) regularization for retaining the fine detail and reducing the staircase effect. Furthermore, we develop an alternating direction method of multiplier (ADMM) to solve the proposed model. Experimental results demonstrate that our model outperforms some state-of-the-art methods in terms of visual and quantitative measures.

[1]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[2]  Pierrick Coupé,et al.  Nonlocal Means-Based Speckle Filtering for Ultrasound Images , 2009, IEEE Transactions on Image Processing.

[3]  Gilles Aubert,et al.  A Variational Approach to Removing Multiplicative Noise , 2008, SIAM J. Appl. Math..

[4]  Michael K. Ng,et al.  A New Convex Optimization Model for Multiplicative Noise and Blur Removal , 2014, SIAM J. Imaging Sci..

[5]  T.C.E. Cheng,et al.  Scheduling with Time-Dependent Processing Times 2015 , 2014 .

[6]  Kristian Bredies,et al.  Recovering Piecewise Smooth Multichannel Images by Minimization of Convex Functionals with Total Generalized Variation Penalty , 2011, Efficient Algorithms for Global Optimization Methods in Computer Vision.

[7]  Bingsheng He,et al.  On the O(1/n) Convergence Rate of the Douglas-Rachford Alternating Direction Method , 2012, SIAM J. Numer. Anal..

[8]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[9]  Xiangchu Feng,et al.  Speckle Noise Reduction via Nonconvex High Total Variation Approach , 2015 .

[10]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[11]  Jie Huang,et al.  Fast reduction of speckle noise in real ultrasound images , 2013, Signal Process..

[12]  Fabrizio Argenti,et al.  LMMSE and MAP estimators for reduction of multiplicative noise in the nonsubsampled contourlet domain , 2009, Signal Process..

[13]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[14]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[15]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .

[16]  Jing Jin,et al.  Ultrasonic speckle reduction based on soft thresholding in quaternion wavelet domain , 2012, 2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings.

[17]  Gang Liu,et al.  High-order TVL1-based images restoration and spatially adapted regularization parameter selection , 2014, Comput. Math. Appl..

[18]  Michael K. Ng,et al.  Inexact Alternating Direction Methods for Image Recovery , 2011, SIAM J. Sci. Comput..

[19]  Junfeng Yang,et al.  A Fast Alternating Direction Method for TVL1-L2 Signal Reconstruction From Partial Fourier Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[20]  Gabriele Steidl,et al.  Removing Multiplicative Noise by Douglas-Rachford Splitting Methods , 2010, Journal of Mathematical Imaging and Vision.

[21]  Ting-Zhu Huang,et al.  Image deblurring with an inaccurate blur kernel using a group-based low-rank image prior , 2017, Inf. Sci..

[22]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[23]  Wotao Yin,et al.  A New Detail-Preserving Regularization Scheme , 2014, SIAM J. Imaging Sci..

[24]  Li Bai,et al.  Denoising optical coherence tomography using second order total generalized variation decomposition , 2016, Biomed. Signal Process. Control..

[25]  Zhi-Quan Luo,et al.  On the linear convergence of the alternating direction method of multipliers , 2012, Mathematical Programming.

[26]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[27]  T. Loupas,et al.  An adaptive weighted median filter for speckle suppression in medical ultrasonic images , 1989 .

[28]  Gang Liu,et al.  Tensor completion using total variation and low-rank matrix factorization , 2016, Inf. Sci..

[29]  Ting-Zhu Huang,et al.  Group-based image decomposition using 3-D cartoon and texture priors , 2016, Inf. Sci..

[30]  Thanasis Loupas,et al.  Digital image processing for noise reduction in medical ultrasonics , 1988 .

[31]  Raymond H. Chan,et al.  A Fast Algorithm for Deblurring Models with Neumann Boundary Conditions , 1999, SIAM J. Sci. Comput..

[32]  Yiqiu Dong,et al.  Cauchy Noise Removal by Nonconvex ADMM with Convergence Guarantees , 2017, Journal of Scientific Computing.

[33]  Yong Chen,et al.  Group sparsity based regularization model for remote sensing image stripe noise removal , 2017, Neurocomputing.

[34]  Thomas L. Szabo,et al.  Diagnostic Ultrasound Imaging: Inside Out , 2004 .

[35]  Chuan Chen,et al.  Alternating Direction Method of Multipliers for Nonlinear Image Restoration Problems , 2015, IEEE Transactions on Image Processing.

[36]  James F. Greenleaf,et al.  Adaptive speckle reduction filter for log-compressed B-scan images , 1996, IEEE Trans. Medical Imaging.

[37]  Manish Khare,et al.  Despeckling of medical ultrasound images using Daubechies complex wavelet transform , 2010, Signal Process..

[38]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[39]  A. Webb,et al.  Introduction to biomedical imaging , 2002 .

[40]  R. W. Liu,et al.  Generalized total variation-based MRI Rician denoising model with spatially adaptive regularization parameters. , 2014, Magnetic resonance imaging.

[41]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[42]  Yong Chen,et al.  Stripe noise removal of remote sensing images by total variation regularization and group sparsity constraint , 2017, Remote. Sens..

[43]  Carl-Fredrik Westin,et al.  Speckle-constrained filtering of ultrasound images , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[44]  Khalifa Djemal,et al.  A new speckle filtering method for ultrasound images based on a weighted multiplicative total variation , 2014, Signal Process..

[45]  D. Kaplan,et al.  On the statistical characteristics of log‐compressed Rayleigh signals: Theoretical formulation and experimental results , 1994 .

[46]  Michael K. Ng,et al.  Deblurring and Sparse Unmixing for Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[47]  Xiaoping Yang,et al.  A Variational Model to Remove the Multiplicative Noise in Ultrasound Images , 2010, Journal of Mathematical Imaging and Vision.

[48]  Carl-Fredrik Westin,et al.  Oriented Speckle Reducing Anisotropic Diffusion , 2007, IEEE Transactions on Image Processing.

[49]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[50]  Yang Gao,et al.  Speckle Reduction via Higher Order Total Variation Approach , 2014, IEEE Transactions on Image Processing.

[51]  Ting-Zhu Huang,et al.  Image restoration using total variation with overlapping group sparsity , 2013, Inf. Sci..