A natural nonconforming FEM for the Bingham flow problem is quasi-optimal

This paper introduces a novel three-field formulation for the Bingham flow problem and its two-dimensional version named after Mosolov together with low-order discretizations: a nonconforming for the classical formulation and a mixed finite element method for the three-field model. The two discretizations are equivalent and quasi-optimal in the sense that the $$H^1$$H1 error of the primal variable is bounded by the error of the $$L^2$$L2 best-approximation of the stress variable. This improves the predicted convergence rate by a log factor of the maximal mesh-size in comparison to the first-order conforming finite element method in a model scenario. Despite that numerical experiments lead to comparable results, the nonconforming scheme is proven to be quasi-optimal while this is not guaranteed for the conforming one.

[1]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[2]  Roland Glowinski,et al.  On the numerical simulation of Bingham visco-plastic flow: Old and new results , 2007 .

[3]  C. Carstensen,et al.  Medius analysis and comparison results for first-order finite element methods in linear elasticity , 2015 .

[4]  J. Lions,et al.  Inequalities in mechanics and physics , 1976 .

[5]  P. P. Mosolov,et al.  On stagnant flow regions of a viscous-plastic medium in pipes , 1966 .

[6]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[7]  D. Arnold,et al.  A uniformly accurate finite element method for the Reissner-Mindlin plate , 1989 .

[8]  Haim Brezis,et al.  Monotonicity Methods in Hilbert Spaces and Some Applications to Nonlinear Partial Differential Equations , 1971 .

[9]  Roland Glowinski,et al.  Théorie générale. Premières applications , 1976 .

[10]  Carsten Carstensen,et al.  Comparison results for the Stokes equations , 2014 .

[11]  Carsten Carstensen,et al.  Adaptive nonconforming Crouzeix-Raviart FEM for eigenvalue problems , 2014, Math. Comput..

[12]  Gregory Seregin,et al.  Variational Methods for Problems from Plasticity Theory and for Generalized Newtonian Fluids , 2001 .

[13]  Gaston H. Gonnet,et al.  Scientific Computation , 2009 .

[14]  Richard S. Falk,et al.  Error estimates for elasto-plastic problems , 1977 .

[15]  Kazufumi Ito,et al.  The Primal-Dual Active Set Strategy as a Semismooth Newton Method , 2002, SIAM J. Optim..

[16]  P. P. Mosolov,et al.  Variational methods in the theory of the fluidity of a viscous-plastic medium , 1965 .

[17]  Carsten Carstensen,et al.  Comparison Results of Finite Element Methods for the Poisson Model Problem , 2012, SIAM J. Numer. Anal..

[18]  Carsten Carstensen,et al.  Guaranteed lower bounds for eigenvalues , 2014, Math. Comput..

[19]  R. Glowinski Sur l'approximation d'une inéquation variationnelle elliptique de type Bingham , 1976 .

[20]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[21]  P. P. Mosolov,et al.  On qualitative singularities of the flow of a viscoplastic medium in pipes , 1967 .

[22]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[23]  R. Glowinski,et al.  Numerical Methods for Nonlinear Variational Problems , 1985 .