Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft

Can you spot a speck of space dust? NASA's Stardust spacecraft has been collecting cosmic dust: Aerogel tiles and aluminum foil sat for nearly 200 days in the interstellar dust stream before returning to Earth. Citizen scientists identified most of the 71 tracks where particles were caught in the aerogel, and scanning electron microscopy revealed 25 craterlike features where particles punched through the foil. By performing trajectory and composition analysis, Westphal et al. report that seven of the particles may have an interstellar origin. These dust particles have surprisingly diverse mineral content and structure as compared with models of interstellar dust based on previous astronomical observations. Science, this issue p. 786 Analysis of seven particles captured by aerogel and foil reveals diverse characteristics not conforming to a single model. Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

Saša Bajt | John Bridges | Michael E. Zolensky | Peter Cloetens | Mark C. Price | David P. Anderson | Bart Vekemans | Laurence Lemelle | Tom Schoonjans | Hans A. Bechtel | Carlton Allen | Manfred Burghammer | Rhonda M. Stroud | Donald E. Brownlee | Ralf Srama | Scott A. Sandford | Tolek Tyliszczak | William Marchant | Laszlo Vincze | Veerle J. Sterken | Andrew J. Westphal | Thomas Stephan | V. A. Solé | Frank E. Brenker | Anna L. Butterworth | George J. Flynn | Eberhard Grün | Peter Hoppe | Andrew M. Davis | Mark Burchell | Nabil Bassim | Peter Tsou | Barry Lai | Frank Postberg | Kate Schreiber | Bruce Hudson | Zack Gainsforth | Robert Lettieri | Larry R. Nittler | B. Lai | A. Davis | S. Bajt | T. Tyliszczak | C. Allen | L. Lemelle | A. Simionovici | A. Westphal | R. Bastien | H. Bechtel | F. Brenker | J. Bridges | D. Brownlee | M. Burchell | M. Burghammer | A. Butterworth | P. Cloetens | C. Floss | G. Flynn | D. Frank | Z. Gainsforth | E. Grün | P. Hoppe | A. Kearsley | H. Leroux | R. Lettieri | W. Marchant | L. Nittler | R. Ogliore | F. Postberg | S. Sandford | S. Schmitz | G. Silversmit | R. Srama | F. Stadermann | T. Stephan | R. Stroud | S. Sutton | M. Trieloff | P. Tsou | B. Vekemans | L. Vincze | D. Zevin | M. Zolensky | J. Hillier | N. Bassim | V. Sterken | P. Heck | Geert Silversmit | Vicente A. Solé | David R. Frank | Jon K. Hillier | Asna Ansari | Ron K. Bastien | Hitesh Changela | Ryan Doll | Christine Floss | Philipp R. Heck | Joachim Huth | Ashley J. King | Jan Leitner | Hugues Leroux | Ariel Leonard | Juan-Angel Sans Tresseras | Sylvia Schmitz | Julien Stodolna | Mario Trieloff | Naomi Wordsworth | Daniel Zevin | Alexandre S. Simionovici | David Anderson | Anton Kearsley | Ryan Ogliore | Wei Jia Ong | Frank Stadermann | Stephen Sutton | Joshua Von Korff | J. Huth | J. Stodolna | M. Price | W. Ong | H. Changela | A. King | A. Ansari | R. Doll | B. Hudson | J. Leitner | A. Leonard | J. Tresseras | T. Schoonjans | Naomi Wordsworth | J. Von Korff | K. Schreiber

[1]  J. Borg,et al.  Comet 81P/Wild 2: The size distribution of finer (sub‐10 μm) dust collected by the Stardust spacecraft , 2010 .

[2]  P. Frisch,et al.  Interstellar dust close to the Sun , 2012, Earth, Planets and Space.

[3]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination I: Identification of tracks in aerogel , 2014 .

[4]  Vanessa,et al.  Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81 P ⁄ Wild 2 , 2010 .

[5]  S. Messenger,et al.  Supernova Olivine from Cometary Dust , 2005, Science.

[6]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[7]  J. Bertaux,et al.  On the Decades-Long Stability of the Interstellar Wind through the Solar System , 2014, 1402.1977.

[8]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector , 2014 .

[9]  M. Burchell,et al.  Stardust interstellar dust calibration: Hydrocode modeling of impacts on Al‐1100 foil at velocities up to 300 km s−1 and validation with experimental data , 2012 .

[10]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination VIII: Identification of crystalline material in two interstellar candidates , 2014 .

[11]  V. A. Solé,et al.  Stardust Interstellar Preliminary Examination IX: High‐speed interstellar dust analog capture in Stardust flight‐spare aerogel , 2014 .

[12]  Mark R. Morris,et al.  HIGH-PRECISION C17O, C18O, AND C16O MEASUREMENTS IN YOUNG STELLAR OBJECTS: ANALOGUES FOR CO SELF-SHIELDING IN THE EARLY SOLAR SYSTEM , 2009, 0906.1024.

[13]  L. Nittler,et al.  Galactic chemical evolution and the oxygen isotopic composition of the solar system , 2011, 1207.7337.

[14]  A. Tielens,et al.  The Absence of Crystalline Silicates in the Diffuse Interstellar Medium , 2004, astro-ph/0403609.

[15]  M. Burchell,et al.  Experimental investigation of impacts by solar cell secondary ejecta on silica aerogel and aluminum foil: Implications for the Stardust Interstellar Dust Collector , 2012 .

[16]  M. Landgraf,et al.  Aspects of the mass distribution of interstellar dust grains in the solar system from in situ measurements , 1999 .

[17]  B. Draine INTERSTELLAR DUST GRAINS , 2003, astro-ph/0304489.

[18]  G. Davis,et al.  Galactic interstellar 18 O/{^17}O ratios - a radial gradient? , 2008, 0805.3399.

[19]  B. Draine Perspectives on Interstellar Dust Inside and Outside of the Heliosphere , 2008, 0809.5233.

[20]  Saša Bajt,et al.  Final reports of the Stardust Interstellar Preliminary Examination , 2014 .

[21]  M. Morris,et al.  ASTRONOMICAL OXYGEN ISOTOPIC EVIDENCE FOR SUPERNOVA ENRICHMENT OF THE SOLAR SYSTEM BIRTH ENVIRONMENT BY PROPAGATING STAR FORMATION , 2010, 1012.5146.

[22]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[23]  F. Molster,et al.  The Mineralogy of Interstellar and Circumstellar Dust , 2003 .

[24]  Aerogel keystones: Extraction of complete hypervelocity impact events from aerogel collectors , 2003, astro-ph/0312460.

[25]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination X: Impact speeds and directions of interstellar grains on the Stardust dust collector , 2014 .

[26]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination VI: Quantitative elemental analysis by synchrotron X‐ray fluorescence nanoimaging of eight impact features in aerogel , 2014 .

[27]  J. Hovenier,et al.  The infrared emission spectra of compositionally inhomogeneous aggregates composed of irregularly shaped constituents , 2008, 0806.4038.

[28]  Hugo Fechtig,et al.  Collisional balance of the meteoritic complex , 1985 .

[29]  D. Mccomas,et al.  Decades-Long Changes of the Interstellar Wind Through Our Solar System , 2013, Science.

[30]  E. Jessberger,et al.  Composition, Structure, and Size Distribution of Dust in the Local Interstellar Cloud , 2003 .

[31]  R. Srama,et al.  Three years of Ulysses dust data: 2005 to 2007 , 2009, 0908.1279.

[32]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination III: Infrared spectroscopic analysis of interstellar dust candidates , 2014 .

[33]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination VII: Synchrotron X‐ray fluorescence analysis of six Stardust interstellar candidates measured with the Advanced Photon Source 2‐ID‐D microprobe , 2014 .

[34]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination IV: Scanning transmission X‐ray microscopy analyses of impact features in the Stardust Interstellar Dust Collector , 2014 .

[35]  J. Borg,et al.  Dust from comet Wild 2: Interpreting particle size, shape, structure, and composition from impact features on the Stardust aluminum foils , 2008 .

[36]  Joseph A. Nuth,et al.  Dust destruction in the ISM: a re-evaluation of dust lifetimes , 2011 .

[37]  A. Tielens,et al.  Erratum: “The Absence of Crystalline Silicates in the Diffuse Interstellar Medium” (ApJ, 609, 826 [2004]) , 2005 .

[38]  Andrew Steele,et al.  Comet 81P/Wild 2 Under a Microscope , 2006, Science.

[39]  C. Vollmer,et al.  Stellar MgSiO3 Perovskite: A Shock-transformed Stardust Silicate Found in a Meteorite , 2007 .

[40]  D. Jewitt,et al.  A recent disruption of the main-belt asteroid P/2010 A2 , 2010, Nature.

[41]  H. Fechtig,et al.  Discovery of Jovian dust streams and interstellar grains by the Ulysses spacecraft , 1993, Nature.

[42]  Carol M. Ashton,et al.  2005 to 2007 , 2013 .

[43]  A. Penzias The isotopic abundances of interstellar oxygen. , 1981 .

[44]  D. Vokrouhlický,et al.  Physical properties of asteroid dust bands and their sources , 2006 .

[45]  Saša Bajt,et al.  Assessment and control of organic and other contaminants associated with the Stardust sample return from comet 81P/Wild 2 , 2010 .

[46]  E. Grün,et al.  Interstellar Dust Inside and Outside the Heliosphere , 2008, 0802.3787.

[47]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination II: Curating the interstellar dust collector, picokeystones, and sources of impact tracks , 2014 .

[48]  Ucla,et al.  The return of activity in main-belt comet 133P/Elst–Pizarro , 2009, 0911.5522.

[49]  J. Bradley Chemically Anomalous, Preaccretionally Irradiated Grains in Interplanetary Dust from Comets , 1994, Science.

[50]  Harold F. Levison,et al.  COMETARY ORIGIN OF THE ZODIACAL CLOUD AND CARBONACEOUS MICROMETEORITES. IMPLICATIONS FOR HOT DEBRIS DISKS , 2009, 0909.4322.

[51]  Michael E. Zolensky,et al.  Wild 2 and interstellar sample collection and Earth return , 2003 .

[52]  David P. Anderson,et al.  Stardust Interstellar Preliminary Examination V: XRF analyses of interstellar dust candidates at ESRF ID13 , 2014 .

[53]  S. Messenger,et al.  Origins of GEMS Grains , 2011 .