Synthesis and spectroscopic studies of chiral CdSe quantum dots

Using microwave irradiation, water soluble, optically active, penicillamine (Pen) capped CdSe nanocrystals with broad spectral distribution (430–780 nm) of photoluminescence have been produced and studied by a range of instrumental techniques including absorption, circular dichroism and both steady state and time resolved photoluminescence spectroscopy. The photoluminescence of these nanocrystals is attributed to emission from surface defect states. The decay of the excited state in the nanosecond region, which can be analysed as a triple exponential, depends strongly on the emission wavelength selected, but only weakly on the excitation wavelength.

[1]  W. Marsden I and J , 2012 .

[2]  Bill Y. Lin,et al.  Facile synthesis of water-soluble and size-homogeneous cadmium selenide nanoparticles and their application as a long-wavelength fluorescent probe for detection of Hg(II) in aqueous solution. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[3]  M. Valcárcel,et al.  Selective quantification of carnitine enantiomers using chiral cysteine-capped CdSe(ZnS) quantum dots. , 2009, Analytical chemistry.

[4]  R. Demadrille,et al.  Carbodithioate-Containing Oligo- and Polythiophenes for Nanocrystals' Surface Functionalization , 2006 .

[5]  Stephan Link,et al.  The relaxation pathways of CdSe nanoparticles monitored with femtosecond time-resolution from the visible to the IR: Assignment of the transient features by carrier quenching , 2001 .

[6]  H. Yao,et al.  Large optical activity of gold nanocluster enantiomers induced by a pair of optically active penicillamines. , 2005, Journal of the American Chemical Society.

[7]  Jiayu Zhang,et al.  Surface-Related Emission in Highly Luminescent CdSe Quantum Dots , 2003 .

[8]  E. Wang,et al.  One-pot synthesis of CdTe nanocrystals and shape control of luminescent CdTe-cystine nanocomposites. , 2006, Small.

[9]  M. Bawendi,et al.  Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. , 2007, Journal of the American Chemical Society.

[10]  A Paul Alivisatos,et al.  Employing end-functional polythiophene to control the morphology of nanocrystal-polymer composites in hybrid solar cells. , 2004, Journal of the American Chemical Society.

[11]  V. Dzhagan,et al.  Growth and spectroscopic characterization of CdSe nanoparticles synthesized from CdCl2 and Na2SeSO3 in aqueous gelatine solutions , 2006 .

[12]  Tsuyoshi Kawai,et al.  Optical activity and chiral memory of thiol-capped CdTe nanocrystals. , 2009, Journal of the American Chemical Society.

[13]  Ququan Wang,et al.  The Influence of Surface Trapping and Dark States on the Fluorescence Emission Efficiency and Lifetime of CdSe and CdSe/ZnS Quantum Dots , 2007, Journal of Fluorescence.

[14]  N. Kotov,et al.  Coupled Composite CdS−CdSe and Core−Shell Types of (CdS)CdSe and (CdSe)CdS Nanoparticles , 1996 .

[15]  Felice Shieh,et al.  General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. , 2005, The journal of physical chemistry. B.

[16]  Gabriel Shemer,et al.  Plasmon-resonance-enhanced absorption and circular dichroism. , 2008, Angewandte Chemie.

[17]  John M Kelly,et al.  Chiral highly luminescent CdS quantum dots. , 2007, Chemical communications.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Zhiyong Tang,et al.  Similar topological origin of chiral centers in organic and nanoscale inorganic structures: effect of stabilizer chirality on optical isomerism and growth of CdTe nanocrystals. , 2010, Journal of the American Chemical Society.

[20]  Jennifer A Hollingsworth,et al.  Pushing the band gap envelope: mid-infrared emitting colloidal PbSe quantum dots. , 2004, Journal of the American Chemical Society.

[21]  A. Osuka,et al.  Optically active single-walled carbon nanotubes. , 2007, Nature nanotechnology.

[22]  Gil Markovich,et al.  Chirality of silver nanoparticles synthesized on DNA. , 2006, Journal of the American Chemical Society.

[23]  I. Willner,et al.  Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage. , 2005, The journal of physical chemistry. B.

[24]  P. Guyot-Sionnest,et al.  Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals , 1996 .

[25]  A. Mews,et al.  Fluorescence decay time of single semiconductor nanocrystals. , 2002, Physical review letters.

[26]  R. Advíncula,et al.  Conjugated Oligothiophene-Dendron-Capped CdSe Nanoparticles: Synthesis and Energy Transfer , 2004 .

[27]  Andrew G. Glen,et al.  APPL , 2001 .

[28]  Nikolai Gaponik,et al.  THIOL-CAPPING OF CDTE NANOCRYSTALS: AN ALTERNATIVE TO ORGANOMETALLIC SYNTHETIC ROUTES , 2002 .

[29]  P. Alivisatos The use of nanocrystals in biological detection , 2004, Nature Biotechnology.

[30]  Eamonn Mullins,et al.  Statistics for the Quality Control Chemistry Laboratory , 2003 .

[31]  V. Kitaev Chiral nanoscale building blocksfrom understanding to applications , 2008 .

[32]  H. Ghosh,et al.  Ultrafast Charge Carrier Relaxation and Charge Transfer Dynamics of CdTe/CdS Core−Shell Quantum Dots as Studied by Femtosecond Transient Absorption Spectroscopy , 2010 .

[33]  D. Balding,et al.  HLA Sequence Polymorphism and the Origin of Humans , 2006 .

[34]  Qiang Wang,et al.  Semiconductor “Nano-Onions” with Multifold Alternating CdS/CdSe or CdSe/CdS Structure , 2006 .

[35]  N. Kotov,et al.  CdS nanoparticles modified to chalcogen sites: new supramolecular complexes, butterfly bridging, and related optical effects. , 2002, Journal of the American Chemical Society.

[36]  Jiayu Zhang,et al.  Electronic structure transformation from a quantum-dot to a quantum-wire system: Photoluminescence decay and polarization of colloidal CdSe quantum rods , 2002 .

[37]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[38]  P. Kamat,et al.  Tuning the emission of CdSe quantum dots by controlled trap enhancement. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[39]  T. Lian,et al.  Competition between Energy and Electron Transfer from CdSe QDs to Adsorbed Rhodamine B , 2010 .

[40]  T. Emrick,et al.  Synthesis and characterization of CdSe nanorods functionalized with regioregular poly(3-hexylthiophene) , 2007 .

[41]  Geoffrey F. Strouse,et al.  Nanosecond exciton recombination dynamics in colloidal CdSe quantum dots under ambient conditions , 2003 .

[42]  P. P. Hankare,et al.  A simple, convenient, low temperature route to grow polycrystalline copper selenide thin films , 2003 .

[43]  R. Whetten,et al.  Giant Gold−Glutathione Cluster Compounds: Intense Optical Activity in Metal-Based Transitions , 2000 .

[44]  Joseph M Slocik,et al.  Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. , 2010, Nano letters.

[45]  Andreas Kornowski,et al.  CdSe/CdS/ZnS and CdSe/ZnSe/ZnS Core−Shell−Shell Nanocrystals , 2004 .

[46]  Jun Li,et al.  Stoichiometric Ratio Dependent Photoluminescence Quantum Yields of the Thiol Capping CdTe Nanocrystals , 2007 .

[47]  Preparation and application of L-cysteine-modified CdSe/CdS core/shell nanocrystals as a novel fluorescence probe for detection of nucleic acid. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[48]  M. Crawford,et al.  Nanocrystal-based light-emitting diodes utilizing high-efficiency nonradiative energy transfer for color conversion. , 2006, Nano letters.

[49]  N. Berova,et al.  Racemic single-walled carbon nanotubes exhibit circular dichroism when wrapped with DNA. , 2006, Journal of the American Chemical Society.

[50]  Hong Wang,et al.  L-Cysteine-coated CdSe/CdS core-shell quantum dots as selective fluorescence probe for copper(II) determination , 2008 .

[51]  Z. Rosenzweig,et al.  Luminescent CdS quantum dots as selective ion probes. , 2002, Analytical chemistry.

[52]  Y. Gun’ko,et al.  Chiral shells and achiral cores in CdS quantum dots. , 2008, Nano letters.

[53]  William L. Wilson,et al.  Luminescence properties of CdSe quantum crystallites: Resonance between interior and surface localized states , 1992 .