Longitudinal structure of the equatorial anomaly in the nighttime ionosphere observed by IMAGE/FUV

[1] The Far Ultraviolet Imager (FUV) on board the IMAGE satellite provides an instantaneous global view of the OI 135.6-nm nightglow with 2 min time resolution. Because the OI 135.6-nm emission from the nighttime ionosphere is determined by the line-of-sight integrated plasma density, the nightglow images are useful for studying the nighttime low-latitude ionosphere globally. With the IMAGE/FUV 135.6-nm observations from March to June 2002, we have examined the global characteristics of the nighttime equatorial anomaly (EA) by constructing a constant local time map (LT map), in which pixels within an assigned local time range are extracted from the IMAGE/FUV nightglow images obtained over an observation period of 3 days or more and are put together to compose a global distribution map of emission intensities at that local time. These LT maps show that the development of the EA has a significant longitudinal structure, in which peaks and dips of the crest emission intensity and the crest latitude have about 90° longitudinal separation in the longitude range from 0° to 250°. Although there is not enough data over the American sector, this result suggests that the EA longitudinal structure has a prominent zonal component of the wave number 4. The observed longitudinal structure of the nighttime EA could not be fully explained by factors such as the empirical electric field and neutral wind models, the geomagnetic declination angle, or the displacement of the geomagnetic equator from the geographic equator. To explain the observed longitudinal structure of the EA, in particular, the wave number 4 feature, we may need to consider other forcing, for example, nonmigrating tide originated from the lower atmosphere.

[1]  A. Richmond Modeling equatorial ionospheric electric fields , 1995 .

[2]  J. D. Craven,et al.  Imaging results from Dynamics Explorer 1 , 1988 .

[3]  H. Frey,et al.  Global observations of the zonal drift speed of equatorial ionospheric plasma bubbles , 2004 .

[4]  Harald U. Frey,et al.  Far Ultraviolet Imaging from the Image Spacecraft , 2000 .

[5]  J. Vincent Eccles,et al.  A simple model of low‐latitude electric fields , 1998 .

[6]  R. J. Moffett,et al.  lonization transport effects in the equatorial F region , 1966 .

[7]  R. R. Meier,et al.  Ultraviolet spectroscopy and remote sensing of the upper atmosphere , 1991 .

[8]  G. J. Bailey,et al.  A modelling study of the longitudinal variations in the north-south asymmetries of the ionospheric equatorial anomaly , 1997 .

[9]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release: MIGRATING AND NONMIGRATING SEMIDIURNAL TIDES , 2003 .

[10]  E. Appleton,et al.  Two Anomalies in the Ionosphere , 1946, Nature.

[11]  G. Walker Longitudinal structure of the F-region equatorial anomaly - a review. , 1981 .

[12]  G. Thuillier,et al.  An explanation of the longitudinal variation of the O1D (630 nm) tropical nightglow intensity , 1976 .

[13]  G. Thuillier,et al.  Photochemistry and dynamics in thermospheric intertropical arcs measured by the WIND Imaging Interferometer on board UARS: A comparison with TIE-GCM simulations , 2002 .

[14]  W. B. Hanson A comparison of the oxygen ion‐ion neutralization and radiative recombination mechanisms for producing the ultraviolet nightglow , 1970 .

[15]  C. Valladares,et al.  Theoretical relationship between maximum value of the post‐sunset drift velocity and peak‐to‐valley ratio of anomaly TEC , 2004 .

[16]  M. A. Abdu,et al.  Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F , 2001 .

[17]  J. Forbes,et al.  Upper atmosphere tidal oscillations due to latent heat release in the tropical troposphere , 1997 .

[18]  Harald U. Frey,et al.  Determination of low latitude plasma drift speeds from FUV images , 2003 .

[19]  C. Barth,et al.  OGO 4 SPECTROMETER MEASUREMENTS OF THE TROPICAL ULTRAVIOLET AIRGLOW. , 1970 .

[20]  E. Bramley,et al.  Diffusion and electromagnetic drift in the equatorial F 2 region , 1964 .

[21]  Glenn Joyce,et al.  Sami2 is Another Model of the Ionosphere (SAMI2): A new low-latitude ionosphere model , 2000 .

[22]  Oswald H. W. Siegmund,et al.  Far ultraviolet imaging from the IMAGE spacecraft. 3. Spectral imaging of Lyman-α and OI 135.6 nm , 2000 .

[23]  Harald U. Frey,et al.  Summary of quantitative interpretation of IMAGE far ultraviolet auroral data , 2003 .

[24]  E. Bramley,et al.  Winds and electromagnetic drifts in the equatorial F2-region , 1968 .

[25]  Etienne Renotte,et al.  Far ultraviolet imaging from the IMAGE spacecraft. 1. System design , 2000 .

[26]  George R. Carruthers,et al.  Apollo 16 far ultraviolet imagery of the polar auroras, tropical airglow belts, and general airglow , 1976 .

[27]  James L. Burch,et al.  IMAGE mission overview , 2000 .

[28]  H. Rishbeth The equatorial F-layer: progress and puzzles , 2000 .

[29]  Timothy Fuller-Rowell,et al.  An investigation into the influence of tidal forcing on F region equatorial vertical ion drift using a global ionosphere‐thermosphere model with coupled electrodynamics , 2001 .

[30]  Jeffrey M. Forbes,et al.  Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release , 2002 .

[31]  T. Maruyama,et al.  Global view of the nighttime low‐latitude ionosphere by the IMAGE/FUV 135.6 nm observations , 2003 .

[32]  Talbot A. Chubb,et al.  Equatorial aurora/airglow in the far ultraviolet , 1970 .

[33]  Ludger Scherliess,et al.  Radar and satellite global equatorial F-region vertical drift model , 1999 .

[34]  J. A. Whalen,et al.  Linear dependence of the postsunset equatorial anomaly electron density on solar flux and its relation to the maximum prereversal E × B drift velocity through its dependence on solar flux , 2004 .

[35]  L. Boithias,et al.  RADIO WAVE PROPAGATION , 2013 .