Multiple-soliton solutions for a (3 + 1)-dimensional generalized KP equation

Abstract The simplified form of the Hirota’s method is used to handle a generalized (3 + 1)-dimensional Kadomtsev–Petviashvili (KP) equation. Multiple-soliton solutions and multiple singular soliton solutions are formally established. The coefficients of the spatial variables y and z should be of the form aki and bk i n respectively, where a and b are free parameters and n is finite. The obtained solutions are general and contain other existing solutions.

[1]  A. Wazwaz N-soliton solutions for the Vakhnenko equation and its generalized forms , 2010 .

[2]  Xi-Qiang Liu,et al.  New solutions of the 3 + 1 dimensional Jimbo-Miwa equation , 2004, Appl. Math. Comput..

[3]  R. Hirota,et al.  N-Soliton Solutions of Model Equations for Shallow Water Waves , 1976 .

[4]  Jarmo Hietarinta,et al.  A Search for Bilinear Equations Passing Hirota''s Three-Soliton Condition , 1987 .

[5]  P. Olver,et al.  Existence and Nonexistence of Solitary Wave Solutions to Higher-Order Model Evolution Equations , 1992 .

[6]  Hon-Wah Tam,et al.  SOLITON SOLUTIONS TO THE JIMBO-MIWA EQUATIONS AND THE FORDY-GIBBONS-JIMBO-MIWA EQUATION , 1999 .

[7]  Wen-Xiu Ma,et al.  Wronskian and Grammian solutions to a (3 + 1)-dimensional generalized KP equation , 2011, Appl. Math. Comput..

[8]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[9]  Ryogo Hirota,et al.  Resonance of Solitons in One Dimension , 1983 .

[10]  Abdul-Majid Wazwaz,et al.  Distinct variants of the KdV equation with compact and noncompact structures , 2004, Appl. Math. Comput..

[11]  W. Hereman,et al.  The tanh method: II. Perturbation technique for conservative systems , 1996 .

[12]  Kouichi Toda,et al.  The Painlevé Test and Reducibility to the Canonical Forms for Higher-Dimensional Soliton Equations with Variable-Coefficients , 2006 .

[13]  A. Wazwaz Partial Differential Equations and Solitary Waves Theory , 2009 .

[14]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[15]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[16]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[17]  Abdul-Majid Wazwaz,et al.  New solitons and kinks solutions to the Sharma-Tasso-Olver equation , 2007, Appl. Math. Comput..

[18]  A. Wazwaz A new generalized fifth-order nonlinear integrable equation , 2011 .

[19]  Wenxiu Ma,et al.  A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation , 2009, 0903.5337.

[20]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[21]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[22]  Dan Wang,et al.  New extended rational expansion method and exact solutions of Boussinesq equation and Jimbo-Miwa equations , 2007, Appl. Math. Comput..

[23]  W. Hereman,et al.  The tanh method: I. Exact solutions of nonlinear evolution and wave equations , 1996 .

[24]  Willy Hereman,et al.  Symbolic methods to construct exact solutions of nonlinear partial differential equations , 1997 .