MLAMBDA: a modified LAMBDA method for integer least-squares estimation
暂无分享,去创建一个
[1] Michael E. Pohst,et al. On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications , 1981, SIGS.
[2] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .
[3] Gene H. Golub,et al. Matrix computations , 1983 .
[4] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[5] U. Fincke,et al. Improved methods for calculating vectors of short length in a lattice , 1985 .
[6] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[7] Gerhard Beutler,et al. Rapid static positioning based on the fast ambiguity resolution approach , 1990 .
[8] Claus-Peter Schnorr,et al. Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.
[9] Herbert Landau,et al. On-the-Fly Ambiguity Resolution for Precise Differential Positioning , 1992 .
[10] E. Biglieri,et al. A universal decoding algorithm for lattice codes , 1993 .
[11] P. Teunissen. Least-squares estimation of the integer GPS ambiguities , 1993 .
[12] Peter Teunissen,et al. The invertible GPS ambiguity transformations , 1995 .
[13] P. Teunissen. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .
[14] P. D. Jonge,et al. The LAMBDA method for integer ambiguity estimation: implementation aspects , 1996 .
[15] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[16] Peter Teunissen,et al. GPS for geodesy , 1996 .
[17] Peter Teunissen,et al. GPS Carrier Phase Ambiguity Fixing Concepts , 1998 .
[18] Stephen P. Boyd,et al. Integer parameter estimation in linear models with applications to GPS , 1998, IEEE Trans. Signal Process..
[19] H. Hsu,et al. A new approach to GPS ambiguity decorrelation , 1999 .
[20] P. Teunissen. An optimality property of the integer least-squares estimator , 1999 .
[21] Emanuele Viterbo,et al. A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.
[22] E. Grafarend. Mixed Integer-Real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm , 2000, GPS Solutions.
[23] Peiliang Xu. Random simulation and GPS decorrelation , 2001 .
[24] Tim Springer,et al. New IGS Station and Satellite Clock Combination , 2001, GPS Solutions.
[25] Peter Joosten,et al. LAMBDA: FAQs , 2002 .
[26] Alexander Vardy,et al. Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.
[27] Erik W. Grafarend,et al. GPS integer ambiguity resolution by various decorrelation methods , 2003 .