MLAMBDA: a modified LAMBDA method for integer least-squares estimation

The least-squares ambiguity Decorrelation (LAMBDA) method has been widely used in GNSS for fixing integer ambiguities. It can also solve any integer least squares (ILS) problem arising from other applications. For real time applications with high dimensions, the computational speed is crucial. A modified LAMBDA (MLAMBDA) method is presented. Several strategies are proposed to reduce the computational complexity of the LAMBDA method. Numerical simulations show that MLAMBDA is (much) faster than LAMBDA. The relations between the LAMBDA method and some relevant methods in the information theory literature are pointed out when we introduce its main procedures.

[1]  Michael E. Pohst,et al.  On the computation of lattice vectors of minimal length, successive minima and reduced bases with applications , 1981, SIGS.

[2]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[5]  U. Fincke,et al.  Improved methods for calculating vectors of short length in a lattice , 1985 .

[6]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[7]  Gerhard Beutler,et al.  Rapid static positioning based on the fast ambiguity resolution approach , 1990 .

[8]  Claus-Peter Schnorr,et al.  Lattice Basis Reduction: Improved Practical Algorithms and Solving Subset Sum Problems , 1991, FCT.

[9]  Herbert Landau,et al.  On-the-Fly Ambiguity Resolution for Precise Differential Positioning , 1992 .

[10]  E. Biglieri,et al.  A universal decoding algorithm for lattice codes , 1993 .

[11]  P. Teunissen Least-squares estimation of the integer GPS ambiguities , 1993 .

[12]  Peter Teunissen,et al.  The invertible GPS ambiguity transformations , 1995 .

[13]  P. Teunissen The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .

[14]  P. D. Jonge,et al.  The LAMBDA method for integer ambiguity estimation: implementation aspects , 1996 .

[15]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[16]  Peter Teunissen,et al.  GPS for geodesy , 1996 .

[17]  Peter Teunissen,et al.  GPS Carrier Phase Ambiguity Fixing Concepts , 1998 .

[18]  Stephen P. Boyd,et al.  Integer parameter estimation in linear models with applications to GPS , 1998, IEEE Trans. Signal Process..

[19]  H. Hsu,et al.  A new approach to GPS ambiguity decorrelation , 1999 .

[20]  P. Teunissen An optimality property of the integer least-squares estimator , 1999 .

[21]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[22]  E. Grafarend Mixed Integer-Real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm , 2000, GPS Solutions.

[23]  Peiliang Xu Random simulation and GPS decorrelation , 2001 .

[24]  Tim Springer,et al.  New IGS Station and Satellite Clock Combination , 2001, GPS Solutions.

[25]  Peter Joosten,et al.  LAMBDA: FAQs , 2002 .

[26]  Alexander Vardy,et al.  Closest point search in lattices , 2002, IEEE Trans. Inf. Theory.

[27]  Erik W. Grafarend,et al.  GPS integer ambiguity resolution by various decorrelation methods , 2003 .