VISUALIZATION METHODS FOR TIME-DEPENDENT DATA-AN OVERVIEW

Visualization has been successfully applied to analyse time-dependent data for a long time now. Lately, a number of new approaches have been introduced, promising more effective graphs especially for large datasets and multiparameter data. In this paper, we give an overview on the visualization of time-series data and the available techniques. We provide a taxonomy and discuss general aspects of time-dependent data. After an overview on conventional techniques we discuss techniques for analysing time-dependent multivariate data sets in more detail. After this, we give an overview on dynamic presentation techniques and event-based visualization. 1 MOTIVATION AND BACKGROUND The analysis of time-series data is one of the most widely appearing problems in science, engineering, and business. In the last years this problem gained increasing importance due to the fact that more sensitive sensors in science and engineering and the widespread use of computers in corporations have increased the amount of time-series data collected by many magnitudes. For long, visualization has proven to be an effective approach to analyze time-series data. The motivation behind this approach is to exploit the phenomenal abilities of the human eye to detect structures in images. A well designed visualization can aid in answering the following questions for unknown temporal data (MacEachren 1995):

[1]  Bob Laramee Feature Extraction and Visualization of Flow Fields , 2002 .

[2]  B. Francis,et al.  Visualisation of historical events using Lexis pencils:a case study , 1998 .

[3]  Wm. B. Bailey,et al.  Graphic Methods for Presenting Facts , 1914 .

[4]  Alfred Inselberg,et al.  Multidimensional detective , 1997, Proceedings of VIZ '97: Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium.

[5]  Heidrun Schumann,et al.  Visualisierung - Grundlagen und allgemeine Methoden , 2000 .

[6]  J. V. van Wijk,et al.  Cluster and calendar based visualization of time series data , 1999, Proceedings 1999 IEEE Symposium on Information Visualization (InfoVis'99).

[7]  Geoffrey Matthews,et al.  Worm Plots , 1997, IEEE Computer Graphics and Applications.

[8]  Ralf Dörner,et al.  Agents and virtual environments for communication and decision training for emergencies , 2000, AGENTS '00.

[9]  Pak Chung Wong,et al.  30 Years of Multidimensional Multivariate Visualization , 1994, Scientific Visualization.

[10]  W. Hays Semiology of Graphics: Diagrams Networks Maps. , 1985 .

[11]  T. Todd Elvins VisFiles: presentation techniques for time-series data , 1997, COMG.

[12]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[13]  Mark Monmonier,et al.  Strategies for the visualization of geographic time-series data , 1990 .

[14]  Steven K. Feiner,et al.  Worlds within worlds: metaphors for exploring n-dimensional virtual worlds , 1990, UIST '90.

[15]  Eduard Gröller,et al.  Process visualization with levels of detail , 2002, IEEE Symposium on Information Visualization, 2002. INFOVIS 2002..

[16]  John V. Carlis,et al.  Interactive visualization of serial periodic data , 1998, UIST '98.

[17]  R. Daniel Bergeron,et al.  Database Issues for Data Visualization: Developing a Data Model , 1993, Workshop on Database Issues for Data Visualization.

[18]  Lucy T. Nowell,et al.  ThemeRiver: visualizing theme changes over time , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[19]  Jock D. Mackinlay,et al.  Automating the design of graphical presentations of relational information , 1986, TOGS.

[20]  Robert L. Harris,et al.  Information Graphics: A Comprehensive Illustrated Reference , 1996 .

[21]  B. Marx The Visual Display of Quantitative Information , 1985 .

[22]  John Lasseter,et al.  Principles of traditional animation applied to 3D computer animation , 1987, SIGGRAPH.