Midinfrared GaInSb∕AlGaInSb quantum well laser diodes grown on GaAs

The aluminium-gallium-indium-antimonide (Al x Ga y In\({}_{1-x-y}\)Sb) material system offers great promise for efficient laser diode operation across the 3 to 5 μm wavelength range. It offers an excellent compromise between the requirements for good electronic and optical confinement and those for low series resistance. In addition, the use of an active region comprising compressively strained Type-I quantum wells (QWs) is predicted to lead to increased gain, which leads to lower threshold current densities and hence reduced non-radiative Auger recombination. In this paper a review of recent progress in the development of this material system is given, including the demonstration of multi-quantum well samples exhibiting photoluminescence up to room temperature, and laser diodes operating up to 219 K.

[1]  T. Ashley,et al.  GaInSb/AlInSb Multi-Quantum-Wells for Mid-Infrared Lasers , 2008 .

[2]  Eoin P. O'Reilly,et al.  Theoretical performance and structure optimization of 3.5–4.5 μm InGaSb/InGaAlSb multiple-quantum-well lasers , 2001 .

[3]  I. Vurgaftman,et al.  Interband cascade laser operating to 269 K at /spl lambda/=4.05 /spl mu/m , 2007 .

[4]  Mattias Beck,et al.  Free-space optical data link using Peltier-cooled quantum cascade laser , 2001 .

[5]  Mykhaylo P. Semtsiv,et al.  Short-wavelength (λ≈3.05μm) InP-based strain-compensated quantum-cascade laser , 2006 .

[6]  Leon Shterengas,et al.  High power 2.4μm heavily strained type-I quantum well GaSb-based diode lasers with more than 1W of continuous wave output power and a maximum power-conversion efficiency of 17.5% , 2007 .

[7]  Chenglu Lin,et al.  Low threshold room-temperature continuous-wave operation of 2.24–3.04 μm GaInAsSb/AlGaAsSb quantum-well lasers , 2004 .

[8]  L. Lester,et al.  2.5–3.5 μm optically pumped GaInSb/AlGaInSb multiple quantum well lasers grown on AlInSb metamorphic buffer layers , 2003 .

[9]  Subpicosecond timescale carrier dynamics in GaInAsSb∕AlGaAsSb double quantum wells emitting at 2.3μm , 2008 .

[10]  Luke R. Wilson,et al.  InGaAs∕AlAsSb∕InP quantum cascade lasers operating at wavelengths close to 3μm , 2007 .

[11]  I. Vurgaftman,et al.  Interband cascade laser operating cw to 257 K at λ=3.7 μm , 2006 .

[12]  M. Hopkinson,et al.  InGaAs∕AlAsSb∕InP strain compensated quantum cascade lasers , 2007 .

[13]  William W. Bewley,et al.  High-power and high-efficiency midwave-infrared interband cascade lasers , 2006 .

[14]  R. Sauer,et al.  Temperature and excitation-density-dependent photoluminescence in a GaAs/AlGaAs quantum well , 1999 .

[15]  Manijeh Razeghi,et al.  Temperature dependent characteristics of λ∼3.8μm room-temperature continuous-wave quantum-cascade lasers , 2006 .

[16]  Diana L. Huffaker,et al.  Monolithically integrated III-Sb CW super-luminal light emitting diodes on non-miscut Si (100) substrates , 2007 .

[17]  Rui Q. Yang,et al.  Mid-infrared interband cascade lasers at thermoelectric cooler temperatures , 2006 .

[18]  Wolfgang Bronner,et al.  High peak-power (10.5W) GaInAs∕AlGaAsSb quantum-cascade lasers emitting at λ∼3.6–3.8μm , 2007 .

[19]  A. Siegman,et al.  Room‐temperature photoluminescence times in a GaAs/AlxGa1−xAs molecular beam epitaxy multiple quantum well structure , 1985 .

[20]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[21]  Roland Teissier,et al.  InAs∕AlSb quantum cascade lasers emitting below 3μm , 2007 .

[22]  Leon Shterengas,et al.  Continuous wave operation of diode lasers at 3.36μm at 12°C , 2008 .

[23]  Roland Teissier,et al.  Very short wavelength „ =3.1–3.3 m... quantum cascade lasers , 2006 .