Stack growth of wafer-scale van der Waals superconductor heterostructures

[1]  A. Fert,et al.  Two-dimensional materials prospects for non-volatile spintronic memories , 2022, Nature.

[2]  S. Lau,et al.  Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides , 2022, Science.

[3]  Xiaodong Xu,et al.  Crossover from Ising- to Rashba-type superconductivity in epitaxial Bi2Se3/monolayer NbSe2 heterostructures , 2021, Nature Materials.

[4]  Yang Zhang,et al.  Josephson diode effect from Cooper pair momentum in a topological semimetal , 2021, Nature Physics.

[5]  K. Harada,et al.  Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator , 2021, Nature Communications.

[6]  Yujia Zeng,et al.  The field-free Josephson diode in a van der Waals heterostructure , 2021, Nature.

[7]  M. Manfra,et al.  Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions , 2021, Nature Nanotechnology.

[8]  Y. Ping,et al.  High-order superlattices by rolling up van der Waals heterostructures , 2021, Nature.

[9]  Hyungju Ahn,et al.  Heteroepitaxial van der Waals semiconductor superlattices , 2021, Nature Nanotechnology.

[10]  Zehao Jia,et al.  Van der Waals ferromagnetic Josephson junctions , 2021, Nature Communications.

[11]  Xiaoqing Pan,et al.  General synthesis of two-dimensional van der Waals heterostructure arrays , 2020, Nature.

[12]  A. Foster,et al.  Topological superconductivity in a designer ferromagnet-superconductor van der Waals heterostructure , 2020, 2002.02141.

[13]  D. Englund,et al.  Graphene-based Josephson junction microwave bolometer , 2019, Nature.

[14]  Jiangwei Wang,et al.  Growth of environmentally stable transition metal selenide films , 2019, Nature Materials.

[15]  Jiaqiang Yan,et al.  Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2 , 2019, Nature Physics.

[16]  X. Duan,et al.  Van der Waals integration before and beyond two-dimensional materials , 2019, Nature.

[17]  Kenji Watanabe,et al.  Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.

[18]  X. Duan,et al.  Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe2 Single Crystals and Their Thickness-Dependent Electronic Properties. , 2018, Nano letters.

[19]  Chuanghan Hsu,et al.  A library of atomically thin metal chalcogenides , 2018, Nature.

[20]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[21]  Giuseppe Iannaccone,et al.  Quantum engineering of transistors based on 2D materials heterostructures , 2018, Nature Nanotechnology.

[22]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[23]  F. Miao,et al.  Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions , 2017, Nature Communications.

[24]  Jinho Park,et al.  Strong Proximity Josephson Coupling in Vertically Stacked NbSe2-Graphene-NbSe2 van der Waals Junctions. , 2017, Nano letters.

[25]  David A. Muller,et al.  Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.

[26]  Qingsheng Zeng,et al.  High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition , 2017, Nature Communications.

[27]  Y. Iwasa,et al.  Highly crystalline 2D superconductors , 2017, 1703.03541.

[28]  P. Schwaller,et al.  Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.

[29]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[30]  W. Duan,et al.  Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2 , 2016, Nature Communications.

[31]  X. Duan,et al.  Van der Waals heterostructures and devices , 2016 .

[32]  R. Moriya,et al.  Supercurrent in van der Waals Josephson junction , 2016, Nature Communications.

[33]  Jr-hau He,et al.  Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.

[34]  S. Jhi,et al.  Ultimately short ballistic vertical graphene Josephson junctions , 2015, Nature Communications.

[35]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[36]  A Gholinia,et al.  Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. , 2014, Nano letters.

[37]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[38]  K. L. Shepard,et al.  One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.

[39]  Takashi Taniguchi,et al.  Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.

[40]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[41]  K. L. Shepard,et al.  Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.

[42]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[43]  Ying-Sheng Huang,et al.  Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers , 2013, Nature Communications.

[44]  F. Guinea,et al.  Cloning of Dirac fermions in graphene superlattices , 2012, Nature.

[45]  Pablo Jarillo-Herrero,et al.  Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.

[46]  K. Sunouchi,et al.  Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy , 1985 .