Stack growth of wafer-scale van der Waals superconductor heterostructures
暂无分享,去创建一个
G. Wang | Guowen Yuan | Jie Xu | Xianlei Huang | Zhenjia Zhou | Fuchen Hou | Zihao Fu | Weilin Liu | Xiaoxiang Xi | Junhao Lin | Libo Gao
[1] A. Fert,et al. Two-dimensional materials prospects for non-volatile spintronic memories , 2022, Nature.
[2] S. Lau,et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides , 2022, Science.
[3] Xiaodong Xu,et al. Crossover from Ising- to Rashba-type superconductivity in epitaxial Bi2Se3/monolayer NbSe2 heterostructures , 2021, Nature Materials.
[4] Yang Zhang,et al. Josephson diode effect from Cooper pair momentum in a topological semimetal , 2021, Nature Physics.
[5] K. Harada,et al. Unconventional supercurrent phase in Ising superconductor Josephson junction with atomically thin magnetic insulator , 2021, Nature Communications.
[6] Yujia Zeng,et al. The field-free Josephson diode in a van der Waals heterostructure , 2021, Nature.
[7] M. Manfra,et al. Supercurrent rectification and magnetochiral effects in symmetric Josephson junctions , 2021, Nature Nanotechnology.
[8] Y. Ping,et al. High-order superlattices by rolling up van der Waals heterostructures , 2021, Nature.
[9] Hyungju Ahn,et al. Heteroepitaxial van der Waals semiconductor superlattices , 2021, Nature Nanotechnology.
[10] Zehao Jia,et al. Van der Waals ferromagnetic Josephson junctions , 2021, Nature Communications.
[11] Xiaoqing Pan,et al. General synthesis of two-dimensional van der Waals heterostructure arrays , 2020, Nature.
[12] A. Foster,et al. Topological superconductivity in a designer ferromagnet-superconductor van der Waals heterostructure , 2020, 2002.02141.
[13] D. Englund,et al. Graphene-based Josephson junction microwave bolometer , 2019, Nature.
[14] Jiangwei Wang,et al. Growth of environmentally stable transition metal selenide films , 2019, Nature Materials.
[15] Jiaqiang Yan,et al. Proximity-induced superconducting gap in the quantum spin Hall edge state of monolayer WTe2 , 2019, Nature Physics.
[16] X. Duan,et al. Van der Waals integration before and beyond two-dimensional materials , 2019, Nature.
[17] Kenji Watanabe,et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices , 2018, Nature.
[18] X. Duan,et al. Thickness-Tunable Synthesis of Ultrathin Type-II Dirac Semimetal PtTe2 Single Crystals and Their Thickness-Dependent Electronic Properties. , 2018, Nano letters.
[19] Chuanghan Hsu,et al. A library of atomically thin metal chalcogenides , 2018, Nature.
[20] Takashi Taniguchi,et al. Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.
[21] Giuseppe Iannaccone,et al. Quantum engineering of transistors based on 2D materials heterostructures , 2018, Nature Nanotechnology.
[22] Raja Das,et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.
[23] F. Miao,et al. Van der Waals epitaxial growth and optoelectronics of large-scale WSe2/SnS2 vertical bilayer p–n junctions , 2017, Nature Communications.
[24] Jinho Park,et al. Strong Proximity Josephson Coupling in Vertically Stacked NbSe2-Graphene-NbSe2 van der Waals Junctions. , 2017, Nano letters.
[25] David A. Muller,et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures , 2017, Nature.
[26] Qingsheng Zeng,et al. High-quality monolayer superconductor NbSe2 grown by chemical vapour deposition , 2017, Nature Communications.
[27] Y. Iwasa,et al. Highly crystalline 2D superconductors , 2017, 1703.03541.
[28] P. Schwaller,et al. Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds , 2016, Nature Nanotechnology.
[29] K. Novoselov,et al. 2D materials and van der Waals heterostructures , 2016, Science.
[30] W. Duan,et al. Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2 , 2016, Nature Communications.
[31] X. Duan,et al. Van der Waals heterostructures and devices , 2016 .
[32] R. Moriya,et al. Supercurrent in van der Waals Josephson junction , 2016, Nature Communications.
[33] Jr-hau He,et al. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface , 2015, Science.
[34] S. Jhi,et al. Ultimately short ballistic vertical graphene Josephson junctions , 2015, Nature Communications.
[35] Jun Lou,et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.
[36] A Gholinia,et al. Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. , 2014, Nano letters.
[37] A. M. van der Zande,et al. Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.
[38] K. L. Shepard,et al. One-Dimensional Electrical Contact to a Two-Dimensional Material , 2013, Science.
[39] Takashi Taniguchi,et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. , 2013, Nature materials.
[40] SUPARNA DUTTASINHA,et al. Van der Waals heterostructures , 2013, Nature.
[41] K. L. Shepard,et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices , 2013, Nature.
[42] Hua Zhang,et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.
[43] Ying-Sheng Huang,et al. Visualization and quantification of transition metal atomic mixing in Mo1−xWxS2 single layers , 2013, Nature Communications.
[44] F. Guinea,et al. Cloning of Dirac fermions in graphene superlattices , 2012, Nature.
[45] Pablo Jarillo-Herrero,et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride , 2012, Nature Physics.
[46] K. Sunouchi,et al. Summary Abstract: Fabrication of ultrathin heterostructures with van der Waals epitaxy , 1985 .