Error analysis for a non-standard class of differential quasi-interpolants

Abstract: Given a B-spline M on R^s, s>=1 we consider a classical discrete quasi-interpolant Q"d written in the formQ"df=@?i@?Z^sf(i)L(@?-i),where L(x)@?@?"j"@?"Jc"jM(x-j) for some finite subset J@?Z^s and c"j@?R. This fundamental function is determined to produce a quasi-interpolation operator exact on the space of polynomials of maximal total degree included in the space spanned by the integer translates of M, say P"m. By replacing f(i) in the expression defining Q"df by a modified Taylor polynomial of degree r at i, we derive non-standard differential quasi-interpolants Q"D","rf of f satisfying the reproduction propertyQ"D","rp=p,for allp@?P"m"+"r.We fully analyze the quasi-interpolation error Q"D","rf-f for f@?C^m^+^2(R^s), and we get a two term expression for the error. The leading part of that expression involves a function on the sequence c@?(c"j)"j"@?"J defining the discrete and the differential quasi-interpolation operators. It measures how well the non-reproduced monomials are approximated, and then we propose a minimization problem based on this function.

[1]  María J. Ibáñez,et al.  On near-best discrete quasi-interpolation on a four-directional mesh , 2010, J. Comput. Appl. Math..

[2]  Han Xu-li,et al.  Multi-node higher order expansions of a function , 2003 .

[3]  Gerhard Schmeisser,et al.  Enhancement of the algebraic precision of a linear operator and consequences under positivity , 2009 .

[4]  Allal Guessab,et al.  Optimal bivariate C1 cubic quasi-interpolation on a type-2 triangulation , 2010, J. Comput. Appl. Math..

[5]  Driss Sbibih,et al.  Near-best quasi-interpolants associated with H-splines on a three-direction mesh , 2005 .

[6]  Xuli Han Multi-node higher order expansions of a function , 2003, J. Approx. Theory.

[7]  C. D. Boor,et al.  Box splines , 1993 .

[8]  Gerhard Schmeisser,et al.  Multivariate approximation by a combination of modified Taylor polynomials , 2006 .

[9]  María José,et al.  Quasi-interpolantes spline discretos con norma casi mínima. Teoría y aplicaciones , 2013 .

[10]  Allal Guessab,et al.  Increasing the approximation order of spline quasi-interpolants , 2013, J. Comput. Appl. Math..

[11]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[12]  B. Henderson-Sellers,et al.  Mathematics and Computers in Simulation , 1995 .

[13]  P. Sablonnière,et al.  Near-Best Univariate Spline Discrete Quasi-Interpolants on Nonuniform Partitions , 2004 .

[14]  C. Micchelli,et al.  On multivariate -splines , 1989 .

[15]  Domingo Barrera-Rosillo,et al.  Bernstein--Bézier representation and near-minimally normed discrete quasi-interpolation operators , 2008 .

[16]  Driss Sbibih,et al.  Near minimally normed spline quasi-interpolants on uniform partitions , 2005 .

[17]  M. J. Ibáñez-Pérez,et al.  Minimizing the quasi-interpolation error for bivariate discrete quasi-interpolants , 2009 .

[18]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.