Updated sparse cholesky factors for corotational elastodynamics

We present warp-canceling corotation, a nonlinear finite element formulation for elastodynamic simulation that achieves fast performance by making only partial or delayed changes to the simulation's linearized system matrices. Coupled with an algorithm for incremental updates to a sparse Cholesky factorization, the method realizes the stability and scalability of a sparse direct method without the need for expensive refactorization at each time step. This finite element formulation combines the widely used corotational method with stiffness warping so that changes in the per-element rotations are initially approximated by inexpensive per-node rotations. When the errors of this approximation grow too large, the per-element rotations are selectively corrected by updating parts of the matrix chosen according to locally measured errors. These changes to the system matrix are propagated to its Cholesky factor by incremental updates that are much faster than refactoring the matrix from scratch. A nested dissection ordering of the system matrix gives rise to a hierarchical factorization in which changes to the system matrix cause limited, well-structured changes to the Cholesky factor. We show examples of simulations that demonstrate that the proposed formulation produces results that are visually comparable to those produced by a standard corotational formulation. Because our method requires computing only partial updates of the Cholesky factor, it is substantially faster than full refactorization and outperforms widely used iterative methods such as preconditioned conjugate gradients. Our method supports a controlled trade-off between accuracy and speed, and unlike most iterative methods its performance does not slow for stiffer materials but rather it actually improves.

[1]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[2]  Leonard McMillan,et al.  Stable real-time deformations , 2002, SCA '02.

[3]  André-Louis Cholesky,et al.  Sur la résolution numérique des systèmes d’équations linéaires , 2005 .

[4]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[5]  David Bommes,et al.  Efficient Linear System Solvers for Mesh Processing , 2005, IMA Conference on the Mathematics of Surfaces.

[6]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[7]  Timothy A. Davis,et al.  Dynamic Supernodes in Sparse Cholesky Update/Downdate and Triangular Solves , 2009, TOMS.

[8]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[9]  Timothy A. Davis,et al.  Modifying a Sparse Cholesky Factorization , 1999, SIAM J. Matrix Anal. Appl..

[10]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[11]  Wolfgang Straßer,et al.  A fast finite element solution for cloth modelling , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[12]  John C. Platt,et al.  Elastically deformable models , 1987, SIGGRAPH.

[13]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[14]  Gene H. Golub,et al.  Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.

[15]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[16]  Ronald Fedkiw,et al.  Fluid simulation: SIGGRAPH 2006 course notes (Fedkiw and Muller-Fischer presenation videos are available from the citation page) , 2006, SIGGRAPH Courses.

[17]  James Demmel,et al.  A Scalable Sparse Direct Solver Using Static Pivoting , 1999, PPSC.

[18]  Stephane Cotin,et al.  Asynchronous Preconditioners for Efficient Solving of Non-linear Deformations , 2010, VRIPHYS.

[19]  C. Rankin,et al.  Finite rotation analysis and consistent linearization using projectors , 1991 .

[20]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[21]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[22]  Daniel Cohen-Or,et al.  Geometry-aware bases for shape approximation , 2005, IEEE Transactions on Visualization and Computer Graphics.

[23]  Nicholas I. M. Gould,et al.  A numerical evaluation of sparse direct solvers for the solution of large sparse symmetric linear systems of equations , 2007, TOMS.

[24]  M. Teschner,et al.  Meshless deformations based on shape matching , 2005, SIGGRAPH 2005.

[25]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[26]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[27]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[28]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[29]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[30]  Eftychios Sifakis,et al.  An efficient multigrid method for the simulation of high-resolution elastic solids , 2010, TOGS.

[31]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[32]  Long Chen INTRODUCTION TO FINITE ELEMENT METHODS , 2003 .

[33]  T. Belytschko,et al.  Applications of higher order corotational stretch theories to nonlinear finite element analysis , 1979 .

[34]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[35]  Hyeong-Seok Ko,et al.  Modal warping: real-time simulation of large rotational deformation and manipulation , 2004, IEEE Transactions on Visualization and Computer Graphics.

[36]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[37]  Berthold K. P. Horn,et al.  Closed-form solution of absolute orientation using unit quaternions , 1987 .

[38]  Joseph F. Grcar,et al.  John von Neumann's Analysis of Gaussian Elimination and the Origins of Modern Numerical Analysis , 2011, SIAM Rev..

[39]  Brian Mirtich,et al.  A Survey of Deformable Modeling in Computer Graphics , 1997 .

[40]  James F. O'Brien,et al.  Real-time deformation and fracture in a game environment , 2009, SCA '09.

[41]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[42]  Timothy A. Davis,et al.  Direct Methods for Sparse Linear Systems (Fundamentals of Algorithms 2) , 2006 .

[43]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, SIGGRAPH 2010.

[44]  Markus H. Gross,et al.  Meshless deformations based on shape matching , 2005, ACM Trans. Graph..

[45]  P. N. Godbole Introduction to Finite Element Methods , 2013 .

[46]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[47]  James F. O'Brien,et al.  Interactive simulation of surgical needle insertion and steering , 2009, SIGGRAPH 2009.

[48]  James F. O'Brien,et al.  Interactive simulation of surgical needle insertion and steering , 2009, ACM Trans. Graph..

[49]  D. Rose,et al.  Generalized nested dissection , 1977 .