Relative orientation of videos from range imaging cameras

In this paper we investigate the determination of camera relative orientation in videos from time of flight (ToF) range imaging camera. The task of estimating the relative orientation is realized by fusion of range flow and optical flow constraints, which integrates the range and the intensity channels in a single framework. We demonstrate our approach on videos from a ToF camera involving camera translation and rotational motion and compare it with the ground truth data. Furthermore we distinguish camera motion from an independently moving object using a robust adjustment.

[1]  Thomas B. Moeslund,et al.  Fusion of range and intensity information for view invariant gesture recognition , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[2]  Berthold K. P. Horn Extended Gaussian images , 1984, Proceedings of the IEEE.

[3]  Norbert Pfeifer,et al.  Modelling and Compensating Internal Light Scattering in Time of Flight Range Cameras , 2012 .

[4]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[5]  Marc Rioux,et al.  Direct Estimation of Range Flow on Deformable Shape From a Video Rate Range Camera , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Gilad Adiv,et al.  Determining Three-Dimensional Motion and Structure from Optical Flow Generated by Several Moving Objects , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Fabio Remondino,et al.  TOF Range-Imaging Cameras , 2013 .

[9]  Mubarak Shah,et al.  Recovering 3D Motion of Multiple Objects Using Adaptive Hough Transform , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Gérard G. Medioni,et al.  Object modeling by registration of multiple range images , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[11]  Bernd Jähne,et al.  Range Flow Estimation , 2002, Comput. Vis. Image Underst..

[12]  D. Akca Matching of 3D surfaces and their intensities , 2007 .

[13]  Rozenn Dahyot Unsupervised Camera Motion Estimation and Moving Object Detection in Videos , 2006 .

[14]  Sven Behnke,et al.  Robust Ego-Motion Estimation with ToF Cameras , 2009, ECMR.

[15]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[16]  Andrew W. Fitzgibbon,et al.  Multibody Structure and Motion: 3-D Reconstruction of Independently Moving Objects , 2000, ECCV.

[17]  W. Christian INTEGRATED RANGE CAMERA CALIBRATION USING IMAGE SEQUENCES FROM HAND-HELD OPERATION , 2008 .

[18]  Andrew E. Johnson,et al.  Surface matching for object recognition in complex three-dimensional scenes , 1998, Image Vis. Comput..

[19]  Richard Szeliski,et al.  A Database and Evaluation Methodology for Optical Flow , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[20]  K. Krausa,et al.  LEAST SQUARES MATCHING FOR AIRBORNE LASER SCANNER DATA , 2006 .

[21]  Janis Fehr,et al.  Computing Range Flow from Multi-modal Kinect Data , 2011, ISVC.

[22]  M. Gelautz,et al.  Motion segmentation in videos from time of flight cameras , 2012, 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP).

[23]  Cornelia Fermüller,et al.  Passive navigation as a pattern recognition problem , 1995, International Journal of Computer Vision.

[24]  John G. Harris,et al.  Rigid body motion from range image sequences , 1991, CVGIP Image Underst..

[25]  Carme Torras,et al.  Object modeling using a ToF camera under an uncertainty reduction approach , 2010, 2010 IEEE International Conference on Robotics and Automation.

[26]  A. Gruen,et al.  Least squares 3D surface and curve matching , 2005 .

[27]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[28]  Berthold K. P. Horn,et al.  Direct methods for recovering motion , 1988, International Journal of Computer Vision.