Decidable First-Order Theories of One-Step Rewriting in Trace Monoids

Abstract We prove that the first-order theory of the one-step rewriting relation associated with a trace rewriting system is decidable but in general not elementary. This extends known results on semi-Thue systems but our proofs use new methods; these new methods yield the decidability of local properties expressed in first-order logic augmented by modulo-counting quantifiers. Using the main decidability result, we define several subclasses of trace rewriting systems for which the confluence problem is decidable.

[1]  Jacques Sakarovitch,et al.  Synchronized Rational Relations of Finite and Infinite Words , 1993, Theor. Comput. Sci..

[2]  M. Newman On Theories with a Combinatorial Definition of "Equivalence" , 1942 .

[3]  Markus Lohrey,et al.  Confluence Problems for Trace Rewriting Systems , 2001, Inf. Comput..

[4]  W. V. Quine,et al.  Concatenation as a basis for arithmetic , 1946, Journal of Symbolic Logic.

[5]  Colin Stirling,et al.  Rational Graphs Trace Context-Sensitive Languages , 2001, MFCS.

[6]  David E. Muller,et al.  The Theory of Ends, Pushdown Automata, and Second-Order Logic , 1985, Theor. Comput. Sci..

[7]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[8]  F. Jacquemard Automates d'arbres et reecriture de termes , 1996 .

[9]  Pierre Cartier,et al.  Problemes combinatoires de commutation et rearrangements , 1969 .

[10]  Robert Cori,et al.  Automates et Commutations Partielles , 1985, RAIRO Theor. Informatics Appl..

[11]  M. Leucker Prefix-recognizable graphs and monadic second order logic , 2001 .

[12]  A. Mazurkiewicz Concurrent Program Schemes and their Interpretations , 1977 .

[13]  D. Knuth,et al.  Simple Word Problems in Universal Algebras , 1983 .

[14]  Didier Caucal,et al.  On infinite transition graphs having a decidable monadic theory , 1996, Theor. Comput. Sci..

[15]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[16]  Paliath Narendran,et al.  Preperfectness is Undecidable for Thue Systems Containing Only Length-Reducing Rules and a Single Commutation Rule , 1988, Inf. Process. Lett..

[17]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[18]  Yves Métivier,et al.  Recognizable Subsets of Some Partially Abelian Monoids , 1985, Theor. Comput. Sci..

[19]  Didier Caucal,et al.  On the Regular Structure of Prefix Rewriting , 1990, Theor. Comput. Sci..

[20]  Anca Muscholl,et al.  Solving Word Equations modulo Partial Commutations , 1999, Theor. Comput. Sci..

[21]  Didier Caucal Monadic theory of term rewritings , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[22]  Markus Lohrey Das Konfluenzproblem für Spurersetzungssysteme , 1999 .

[23]  Christine Duboc,et al.  On Some Equations in Free Partially Commutative Monoids , 1986, Theor. Comput. Sci..

[24]  Gérard Huet,et al.  On the Uniform Halting Problem for Term Rewriting Systems , 1978 .

[25]  Albert R. Meyer,et al.  WEAK MONADIC SECOND ORDER THEORY OF SUCCESSOR IS NOT ELEMENTARY-RECURSIVE , 1973 .

[26]  Volker Diekert,et al.  On the Knuth-Bendix Completion for Concurrent Processes , 1987, Theor. Comput. Sci..

[27]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[28]  V. Durnev Undecidability of the positive ∀∃3-theory of a free semigroup , 1995 .

[29]  H. Gaifman On Local and Non-Local Properties , 1982 .

[30]  Christof Löding Ground Tree Rewriting Graphs of Bounded Tree Width , 2002, STACS.

[31]  Friedrich Otto,et al.  String-Rewriting Systems , 1993, Text and Monographs in Computer Science.

[32]  Leonid Libkin,et al.  On counting logics and local properties , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[33]  Leonid Libkin,et al.  Logics capturing local properties , 2000, TOCL.

[34]  Volker Diekert,et al.  Combinatorics on Traces , 1990, Lecture Notes in Computer Science.

[35]  Terese Term rewriting systems , 2003, Cambridge tracts in theoretical computer science.

[36]  Manfred Droste,et al.  Trace Languages Definable with Modular Quantifiers , 1995, Developments in Language Theory.

[37]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[38]  Christophe Morvan,et al.  On Rational Graphs , 2000, FoSSaCS.

[39]  Sophie Tison,et al.  The theory of ground rewrite systems is decidable , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[40]  M. Rabin Decidability of second-order theories and automata on infinite trees , 1968 .

[41]  Howard Straubing,et al.  Regular Languages Defined with Generalized Quanifiers , 1995, Inf. Comput..

[42]  Yuri V. Matiyasevich Some Decision Problems for Traces , 1997, LFCS.

[43]  Wojciech Zielonka,et al.  The Book of Traces , 1995 .

[44]  Oliver Matz Dot-depth, monadic quantifier alternation, and first-order closure over grids and pictures , 2002, Theor. Comput. Sci..

[45]  Anil Nerode,et al.  Automatic Presentations of Structures , 1994, LCC.

[46]  Enno Ohlebusch,et al.  Term Rewriting Systems , 2002 .

[47]  Achim Blumensath Prefix-Recognisable Graphs and Monadic Second-Order Logic , 2001 .

[48]  Leonid Libkin,et al.  Logics with counting and local properties , 2000, TOCL.

[49]  Ralf Treinen The First-Order Theory of Linear One-Step Rewriting is Undecidable , 1998, Theor. Comput. Sci..

[50]  Anca Muscholl,et al.  Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..

[51]  Achim Blumensath,et al.  Automatic structures , 2000, Proceedings Fifteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.99CB36332).

[52]  Klaus Reinhardt,et al.  The Complexity of Translating Logic to Finite Automata , 2001, Automata, Logics, and Infinite Games.

[53]  C. Ward Henson,et al.  A Uniform Method for Proving Lower Bounds on the Computational Complexity of Logical Theories , 1990, Ann. Pure Appl. Log..

[54]  Juha Nurmonen,et al.  Counting Modulo Quantifiers on Finite Structures , 2000, Inf. Comput..

[55]  Matthias Jantzen,et al.  Confluent String Rewriting , 1988, EATCS Monographs on Theoretical Computer Science.

[56]  J. R. Büchi Regular Canonical Systems , 1964 .

[57]  Friedrich Otto,et al.  Finite complete rewriting systems and the complexity of the word problem , 1984, Acta Informatica.

[58]  Dexter Kozen,et al.  Complexity of finitely presented algebras , 1977, STOC '77.

[59]  Walter S. Brainerd,et al.  Tree Generating Regular Systems , 1969, Inf. Control..

[60]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[61]  Markus Lohrey On the Confluence of Trace Rewriting Systems , 1998, FSTTCS.