Optimal Cutwidths and Bisection Widths of 2- and 3-Dimensional Meshes
暂无分享,去创建一个
[1] L. H. Harper. Optimal Assignments of Numbers to Vertices , 1964 .
[2] Mihalis Yannakakis,et al. A polynomial algorithm for the MIN CUT linear arrangement of trees , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[3] A.D. Lopez,et al. A Dense Gate Matrix Layout Method for MOS VLSI , 1980, IEEE Journal of Solid-State Circuits.
[4] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[5] L. Beineke,et al. Selected Topics in Graph Theory 2 , 1985 .
[6] Rudolf Ahlswede,et al. Edge isoperimetric theorems for integer point arrays , 1995 .
[7] André Raspaud,et al. On Bandwidth, Cutwidth, and Quotient Graphs , 1995, RAIRO Theor. Informatics Appl..
[8] A. Bel Hala. Congestion optimale du plongement de l'hypercube H(n) dans la chaîne P(2n) , 1993, RAIRO Theor. Informatics Appl..
[9] Sergiu Hart,et al. A note on the edges of the n-cube , 1976, Discret. Math..
[10] John H. Lindsey,et al. Assignment of Numbers to Vertices , 1964 .
[11] Béla Bollobás,et al. Edge-isoperimetric inequalities in the grid , 1991, Comb..
[12] Thomas Lengauer. Upper and Lower Bounds on the Complexity of the Min-Cut Linear Arrangement Problem on Trees , 1982 .
[13] Koji Nakano. Linear Layouts of Generalized Hypercubes , 1993, WG.