Web Information Systems Engineering – WISE 2016

As traditional advertising model exposes its weakness of ignoring consumer interests, the concept of narrow advertising draws increasingly more attention which considers the feature of each user. Under this specific environment, effective viral marketing has to select a set of initial users to maximize their influence on the targeted customers. This paper aims at the integration of viral marketing and narrow advertising, by proposing a novel problem called attribute-based influence maximization. Firstly, the problem definition is presented with the consideration of user features. Then the influence probability between two nodes is modeled and two heuristic algorithms, Sum of Probability Covered Algorithm (SoPCA) and Community-based Algorithm (CBA), are designed. Finally, experiments on six datasets are conducted to verify the effectiveness of proposed algorithms.

[1]  Qing Liu,et al.  Towards semantic comparison of multi-granularity process traces , 2013, Knowl. Based Syst..

[2]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[3]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[4]  Adriane Chapman,et al.  Provenance Capture and Use: A Practical Guide , 2010 .

[5]  Adriane Chapman,et al.  Efficient provenance storage , 2008, SIGMOD Conference.

[6]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[7]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[8]  Meng Wang,et al.  Study on the combination of video concept detectors , 2008, ACM Multimedia.

[9]  Sergey Brin,et al.  Reprint of: The anatomy of a large-scale hypertextual web search engine , 2012, Comput. Networks.

[10]  Gert R. G. Lanckriet,et al.  Learning Multi-modal Similarity , 2010, J. Mach. Learn. Res..

[11]  Duncan J Watts,et al.  A simple model of global cascades on random networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[12]  Michelle X. Zhou,et al.  Characterizing users’ visual analytic activity for insight provenance , 2008, 2008 IEEE Symposium on Visual Analytics Science and Technology.

[13]  Tao Mei,et al.  Contextual Video Recommendation by Multimodal Relevance and User Feedback , 2011, TOIS.

[14]  Bernhard Schölkopf,et al.  A Generalized Representer Theorem , 2001, COLT/EuroCOLT.

[15]  Tao Mei,et al.  Correlative multi-label video annotation , 2007, ACM Multimedia.

[16]  M. McPherson,et al.  Birds of a Feather: Homophily in Social Networks , 2001 .

[17]  Chunyan Miao,et al.  Online multimodal deep similarity learning with application to image retrieval , 2013, ACM Multimedia.

[18]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[19]  Cláudio T. Silva,et al.  Tackling the Provenance Challenge one layer at a time , 2008 .

[20]  Jacob Goldenberg,et al.  Talk of the Network: A Complex Systems Look at the Underlying Process of Word-of-Mouth , 2001 .

[21]  Yogesh L. Simmhan,et al.  The Open Provenance Model core specification (v1.1) , 2011, Future Gener. Comput. Syst..

[22]  Sanjeev Khanna,et al.  Differencing Provenance in Scientific Workflows , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[23]  Pasquale Lops,et al.  Knowledge infusion into content-based recommender systems , 2009, RecSys '09.

[24]  Steven C. H. Hoi,et al.  Online multi-modal distance learning for scalable multimedia retrieval , 2013, WSDM.

[25]  Shawn Bowers Scientific Workflow, Provenance, and Data Modeling Challenges and Approaches , 2012, Journal on Data Semantics.

[26]  Lev Muchnik,et al.  Identifying influential spreaders in complex networks , 2010, 1001.5285.

[27]  Ahmed Amer,et al.  Compressing Provenance Graphs , 2011, TaPP.

[28]  Ling Chen,et al.  LCARS , 2014, ACM Trans. Inf. Syst..

[29]  Thorsten Joachims,et al.  Learning a Distance Metric from Relative Comparisons , 2003, NIPS.

[30]  L. Freeman Centrality in social networks conceptual clarification , 1978 .

[31]  Zhiting Hu,et al.  Dynamic User Modeling in Social Media Systems , 2015, TOIS.

[32]  Marcel Worring,et al.  The challenge problem for automated detection of 101 semantic concepts in multimedia , 2006, MM '06.

[33]  Yang Wang,et al.  Towards metric fusion on multi-view data: a cross-view based graph random walk approach , 2013, CIKM.

[34]  Eyton,et al.  The Diffusion of Innovations in Social Networks , 2002 .

[35]  Alexandre Passant,et al.  dbrec - Music Recommendations Using DBpedia , 2010, SEMWEB.

[36]  Eric G. Stephan,et al.  Leveraging the Open Provenance Model as a Multi-tier Model for Global Climate Research , 2010, IPAW.

[37]  Cordelia Schmid,et al.  Actions in context , 2009, CVPR.

[38]  Nicu Sebe,et al.  Classifier-specific intermediate representation for multimedia tasks , 2012, ICMR '12.

[39]  Paul R. Cohen,et al.  Maximizing Influence Propagation in Networks with Community Structure , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[41]  Dan Klein,et al.  Feature-Rich Part-of-Speech Tagging with a Cyclic Dependency Network , 2003, NAACL.

[42]  Zi Huang,et al.  A temporal context-aware model for user behavior modeling in social media systems , 2014, SIGMOD Conference.