Computation of free non-commutative gröbner bases over Z with Singular:Letterplace

The extension of Gröbner bases concept from polynomial algebras over fields to polynomial rings over rings allows to tackle numerous applications, both of theoretical and of practical importance. Gröbner and Gröbner-Shirshov bases can be defined for various non-commutative and even non-associative algebraic structures. We study the case of associative rings and aim at free algebras over principal ideal rings. We concentrate ourselves on the case of commutative coefficient rings without zero divisors (i.e. a domain). Even working over Z allows one to do computations, which can be treated as universal for fields of arbitrary characteristic. By using the systematic approach, we revisit the theory and present the algorithms in the implementable form. We show drastic differences in the behavior of Gröbner bases between free algebras and algebras, close to commutative. Even the formation of critical pairs has to be reengineered, together with the criteria for their quick discarding. We present an implementation of algorithms in the Singular subsystem called Letterplace, which internally uses Letterplace techniques (and Letterplace Gröbner bases), due to La Scala and Levandovskyy. Interesting examples accompany our presentation.

[1]  Heinz Kredel Parametric Solvable Polynomial Rings and Applications , 2015, CASC.

[2]  Hans Schönemann,et al.  SINGULAR: a computer algebra system for polynomial computations , 2001, ACCA.

[3]  Yue Ren,et al.  Standard bases in mixed power series and polynomial rings over rings , 2015, J. Symb. Comput..

[4]  G. Bergman The diamond lemma for ring theory , 1978 .

[5]  Christian Eder,et al.  Efficient Gröbner bases computation over principal ideal rings , 2019, J. Symb. Comput..

[6]  Daniel Lichtblau,et al.  Effective computation of strong Gröbner bases over Euclidean domains , 2012 .

[7]  E. Zerz,et al.  Implementation and applications of fundamental algorithms relying on Gröbner bases in free associative algebras , 2014 .

[8]  Miguel Angel Borges,et al.  Gröbner Bases and Applications: Gröbner Bases Property on Elimination Ideal in the Noncommutative Case , 1998 .

[9]  Gerhard Pfister,et al.  Standard bases over Euclidean domains , 2018, J. Symb. Comput..

[10]  Franz Pauer Gröbner bases with coefficients in rings , 2007, J. Symb. Comput..

[11]  Viktor Levandovskyy,et al.  Enhanced computations of gröbner bases in free algebras as a new application of the letterplace paradigm , 2013, ISSAC '13.

[12]  Viktor Levandovskyy,et al.  Skew polynomial rings, Gröbner bases and the letterplace embedding of the free associative algebra , 2010, J. Symb. Comput..

[13]  Algebras Defined by Monic Grobner Bases over Rings , 2009, 0906.4396.

[14]  Joachim Apel,et al.  Computational ideal theory in finitely generated extension rings , 2000, Theor. Comput. Sci..

[15]  F. Leon Pritchard,et al.  The Ideal Membership Problem in Non-Commutative Polynomial Rings , 1996, J. Symb. Comput..

[16]  Viktor Levandovskyy,et al.  Non-commutative Computer Algebra for polynomial algebras: Gröbner bases, applications and implementation , 2005 .

[17]  Viktor Levandovskyy,et al.  Letterplace: a subsystem of singular for computations with free algebras via letterplace embedding , 2020, ISSAC.

[18]  Teo Mora,et al.  Solving Polynomial Equation System IV: Buchberger Theory and Beyond , 2016 .

[19]  Roberto La Scala,et al.  Extended letterplace correspondence for nongraded noncommutative ideals and related algorithms , 2012, Int. J. Algebra Comput..

[20]  Viktor Levandovskyy,et al.  Letterplace ideals and non-commutative Gröbner bases , 2009, J. Symb. Comput..

[21]  G. Pfister,et al.  New Strategies for Standard Bases over Z , 2016, 1609.04257.