Ecology and evolution of bacterial microdiversity.

Using high resolution molecular fingerprinting techniques like random amplification of polymorphic DNA, repetitive extragenic palindromic PCR and multilocus enzyme electrophoresis, a high bacterial diversity below the species and subspecies level (microdiversity) is revealed. It became apparent that bacteria of a certain species living in close association with different plants either as associated rhizosphere bacteria or as plant pathogens or symbiotic organisms, typically reflect this relationship in their genetic relatedness. The strain composition within a population of soil bacterial species at a given field site, which can be identified by these high resolution fingerprinting techniques, was markedly influenced by soil management and soil features. The observed bacterial microdiversity reflected the conditions of the habitat, which select for better adapted forms. In addition, influences of spatial separation on specific groupings of bacteria were found, which argue for the occurrence of isolated microevolution. In this review, examples are presented of bacterial microdiversity as influenced by different ecological factors, with the main emphasis on bacteria from the natural environment. In addition, information available from some of the first complete genome sequences of bacteria (Helicobacter pylori and Escherichia coli) was used to highlight possible mechanisms of molecular evolution through which mutations are created; these include mutator enzymes. Definitions of bacterial species and subspecies ranks are discussed in the light of detailed information from whole genome typing approaches.

[1]  M. Schloter,et al.  Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. , 2000, International journal of systematic and evolutionary microbiology.

[2]  T. Heulin,et al.  Diversity of Paenibacillus polymyxa populations in the rhizosphereof wheat (Triticum durum) in Algerian soils , 2000 .

[3]  F. de la Cruz,et al.  Horizontal gene transfer and the origin of species: lessons from bacteria. , 2000, Trends in microbiology.

[4]  Jan LW Rademaker,et al.  Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. , 2000, International journal of systematic and evolutionary microbiology.

[5]  P. de Vos,et al.  Identification and Population Structure ofBurkholderia stabilis sp. nov. (formerly Burkholderia cepacia Genomovar IV) , 2000, Journal of Clinical Microbiology.

[6]  M. Z. Humayun,et al.  Mutation as an origin of genetic variability in Helicobacter pylori. , 1999, Trends in microbiology.

[7]  A. Franco,et al.  Molecular Evolution of the Pathogenicity Island of Enterotoxigenic Bacteroides fragilis Strains , 1999, Journal of bacteriology.

[8]  J. Raboud,et al.  Burkholderia cepacia in cystic fibrosis. Variable disease course. , 1999, American journal of respiratory and critical care medicine.

[9]  M. Clawson,et al.  Natural Diversity of Frankia Strains in Actinorhizal Root Nodules from Promiscuous Hosts in the Family Myricaceae , 1999, Applied and Environmental Microbiology.

[10]  S. Tabacchioni,et al.  Soil Type and Maize Cultivar Affect the Genetic Diversity of Maize Root–Associated Burkholderia cepacia Populations , 1999, Microbial Ecology.

[11]  J. Swings,et al.  Genomic diversity of the genus Stenotrophomonas. , 1999, International journal of systematic bacteriology.

[12]  G. Tsiamis,et al.  Identification of a pathogenicity island, which contains genes for virulence and avirulence, on a large native plasmid in the bean pathogen Pseudomonas syringae pathovar phaseolicola. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[13]  M. G. Lorenz,et al.  Analysis of genotypic diversity and relationships among Pseudomonas stutzeri strains by PCR-based genomic fingerprinting and multilocus enzyme electrophoresis. , 1999, Systematic and applied microbiology.

[14]  H. Naveau,et al.  Continuous degradation of mixtures of 4-nitrobenzoate and 4-aminobenzoate by immobilized cells of Burkholderia cepacia strain PB4 , 1999, Applied Microbiology and Biotechnology.

[15]  L. Paulin,et al.  Phylogeny and diversity of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan, China. , 1999, Systematic and applied microbiology.

[16]  M. Roberts,et al.  Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp. subtilis subsp. nov. and Bacillus subtilis subsp. spizizenii subsp. nov. , 1999, International journal of systematic bacteriology.

[17]  J. Tiedje,et al.  Taxonomic characterization of denitrifying bacteria that degrade aromatic compounds and description of Azoarcus toluvorans sp. nov. and Azoarcus toluclasticus sp. nov. , 1999, International journal of systematic bacteriology.

[18]  J. Harel,et al.  Genomic relatedness among Actinobacillus pleuropneumoniae field strains of sterotypes 1 and 5 isolated from healthy and diseased pigs. , 1999, Canadian journal of veterinary research = Revue canadienne de recherche veterinaire.

[19]  G. Muyzer DGGE/TGGE a method for identifying genes from natural ecosystems. , 1999, Current opinion in microbiology.

[20]  S. Poussier,et al.  Genetic Diversity of African and Worldwide Strains of Ralstonia solanacearum as Determined by PCR-Restriction Fragment Length Polymorphism Analysis of the hrp Gene Region , 1999, Applied and Environmental Microbiology.

[21]  M. Saarela,et al.  Actinobacillus actinomycetemcomitans serotype e--biotypes, genetic diversity and distribution in relation to periodontal status. , 1999, Oral microbiology and immunology.

[22]  Benjamin L. King,et al.  Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori , 1999, Nature.

[23]  H. Harmsen,et al.  Ochrobactrum intermedium Infection after Liver Transplantation , 1999, Journal of Clinical Microbiology.

[24]  M. Z. Humayun,et al.  SOS and Mayday: multiple inducible mutagenic pathways in Escherichia coli , 1998, Molecular microbiology.

[25]  J. M. Smith,et al.  Free recombination within Helicobacter pylori. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  R. Bostock,et al.  Genetic Characterization of Pseudomonas syringae pv. syringae Strains from Stone Fruits in California , 1998, Applied and Environmental Microbiology.

[27]  J. V. van Elsas,et al.  Comparison of Paenibacillus azotofixans Strains Isolated from Rhizoplane, Rhizosphere, and Non-Root-Associated Soil from Maize Planted in Two Different Brazilian Soils , 1998, Applied and Environmental Microbiology.

[28]  S. Kleinsteuber,et al.  Degradation of various chlorophenols under alkaline conditions by Gram‐negative bacteria closely related to Ochrobactrum anthropi , 1998, Journal of basic microbiology.

[29]  M. Schloter,et al.  New quality of assessment of microbial diversity in arable soils using molecular and biochemical methods , 1998 .

[30]  Michael Travisano,et al.  Adaptive radiation in a heterogeneous environment , 1998, Nature.

[31]  B. Zimmer,et al.  Staphylococcus hominis subsp. novobiosepticus subsp. nov., a novel trehalose- and N-acetyl-D-glucosamine-negative, novobiocin- and multiple-antibiotic-resistant subspecies isolated from human blood cultures. , 1998, International journal of systematic bacteriology.

[32]  L. van der Fits,et al.  A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  X. Nesme,et al.  Comparison of Randomly Amplified Polymorphic DNA with Amplified Fragment Length Polymorphism To Assess Genetic Diversity and Genetic Relatedness within Genospecies III ofPseudomonas syringae , 1998, Applied and Environmental Microbiology.

[34]  W. L. Yu,et al.  Clinical and microbiologic characteristics of Ochrobactrum anthropi bacteremia. , 1998, Journal of the Formosan Medical Association = Taiwan yi zhi.

[35]  Rosado,et al.  Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses , 1998 .

[36]  D. Prévost,et al.  Genetic diversity of rhizobial symbionts isolated from legume species within the genera Astragalus, Oxytropis, and Onobrychis , 1997, Applied and environmental microbiology.

[37]  M. Haygood,et al.  Small-Subunit rRNA Genes and In Situ Hybridization with Oligonucleotides Specific for the Bacterial Symbionts in the Larvae of the Bryozoan Bugula neritina and Proposal of “Candidatus Endobugula sertula” , 1997, Applied and Environmental Microbiology.

[38]  R. Fani,et al.  Biodiversity of a Burkholderia cepacia population isolated from the maize rhizosphere at different plant growth stages , 1997, Applied and environmental microbiology.

[39]  C. Bollet,et al.  Taxonomy of Pseudomonas strains isolated from tomato pith necrosis: emended description of Pseudomonas corrugata and proposal of three unnamed fluorescent Pseudomonas genomospecies. , 1997, International journal of systematic bacteriology.

[40]  E. Moreno In search of a bacterial species definition. , 1997, Revista de biologia tropical.

[41]  T. Heulin,et al.  Metabolic and Genotypic Fingerprinting of Fluorescent Pseudomonads Associated with the Douglas Fir-Laccaria bicolor Mycorrhizosphere , 1997, Applied and environmental microbiology.

[42]  C. Manceau,et al.  Assessment of genetic diversity among strains of Pseudomonas syringae by PCR-restriction fragment length polymorphism analysis of rRNA operons with special emphasis on P. syringae pv. tomato , 1997, Applied and environmental microbiology.

[43]  R. Amann,et al.  Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp , 1997, Applied and environmental microbiology.

[44]  B. Haubold,et al.  Genetic and ecotypic structure of a fluorescent Pseudomonas population , 1996 .

[45]  W. L. Payne,et al.  High Mutation Frequencies Among Escherichia coli and Salmonella Pathogens , 1996, Science.

[46]  G. Laguerre,et al.  Distribution of Symbiotic Genotypes in Rhizobium leguminosarum biovar viciae Populations Isolated Directly from Soils , 1996, Applied and environmental microbiology.

[47]  G. H. Elkan,et al.  Genetic diversity among bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). , 1996, Canadian journal of microbiology.

[48]  L. Hieber,et al.  Application of repetitive sequence-based PCR (inter-LINE PCR) for the analysis of genomic rearrangements and for the genome characterization on different taxonomic levels. , 1996, Genetic analysis : biomolecular engineering.

[49]  M. Vaneechoutte,et al.  DNA fingerprinting techniques for microorganisms , 1996, Molecular biotechnology.

[50]  F. Allard,et al.  The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type , 1996, Applied and environmental microbiology.

[51]  D. Graham,et al.  Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure , 1996, Journal of bacteriology.

[52]  R. Samson,et al.  Distribution of Pseudomonas syringae pathovars into twenty-three O serogroups , 1996, Applied and environmental microbiology.

[53]  M. Bazzicalupo,et al.  Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties , 1996, Applied and environmental microbiology.

[54]  P. de Vos,et al.  Polyphasic Taxonomy , a Consensus Approach to Bacterial Systematics , 1996 .

[55]  P. Mavingui,et al.  Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: application to Rhizobium leguminosarum and its different biovars , 1996, Applied and environmental microbiology.

[56]  R. Davies,et al.  Intra-specific diversity within Pasteurella trehalosi based on variation of capsular polysaccharide, lipopolysaccharide and outer-membrane proteins. , 1996, Microbiology.

[57]  J. Smith,et al.  Bacteriocin Typing of Burkholderia (Pseudomonas) solanacearum Race 1 of the French West Indies and Correlation with Genomic Variation of the Pathogen , 1996, Applied and environmental microbiology.

[58]  M. Holderness,et al.  Genetic diversity of Burkholderia solanacearum (synonym Pseudomonas solanacearum) race 3 in Kenya , 1995, Applied and environmental microbiology.

[59]  C. Ronson,et al.  Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[60]  P. Lemanceau,et al.  Effect of Two Plant Species, Flax (Linum usitatissinum L.) and Tomato (Lycopersicon esculentum Mill.), on the Diversity of Soilborne Populations of Fluorescent Pseudomonads , 1995, Applied and environmental microbiology.

[61]  K. Schleifer,et al.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. , 1995, Microbiological reviews.

[62]  D. Berg,et al.  Adaptive mutation and cocolonization during Helicobacter pylori infection of gnotobiotic piglets , 1995, Infection and immunity.

[63]  Erko Stackebrandt,et al.  Taxonomic Note: A Place for DNA-DNA Reassociation and 16S rRNA Sequence Analysis in the Present Species Definition in Bacteriology , 1994 .

[64]  M. G. Lorenz,et al.  Bacterial gene transfer by natural genetic transformation in the environment. , 1994, Microbiological reviews.

[65]  F. D. de Bruijn,et al.  Specific genomic fingerprints of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR , 1994, Applied and environmental microbiology.

[66]  J. Jakobek,et al.  Restriction fragment length polymorphism evidence for genetic homology within a pathovar of Pseudomonas syringae , 1994, Applied and environmental microbiology.

[67]  J. M. Smith,et al.  How clonal are bacteria? , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[68]  R. Lenski,et al.  Hierarchical analysis of linkage disequilibrium in Rhizobium populations: evidence for sex? , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[69]  J. Kostman,et al.  Molecular epidemiology of Pseudomonas cepacia determined by polymerase chain reaction ribotyping , 1992, Journal of clinical microbiology.

[70]  T. Heulin,et al.  Genetic and Phenotypic Diversity of Bacillus polymyxa in Soil and in the Wheat Rhizosphere , 1992, Applied and environmental microbiology.

[71]  J. Young,et al.  Sym plasmid and chromosomal genotypes are correlated in field populations of Rhizobium leguminosarum , 1988 .

[72]  Lawrence G. Wayne,et al.  International Committee on Systematic Bacteriology: Announcement of the Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics , 1988 .

[73]  C. Woese,et al.  Bacterial evolution , 1987, Microbiological reviews.

[74]  T. Whittam,et al.  Methods of multilocus enzyme electrophoresis for bacterial population genetics and systematics , 1986, Applied and environmental microbiology.

[75]  F. Grimont,et al.  Brucella, a monospecific genus as shown by deoxyribonucleic acid hybridization , 1985 .

[76]  H L Houtzager,et al.  Antonie van Leeuwenhoek. , 1983, European journal of obstetrics, gynecology, and reproductive biology.

[77]  S. H. Boer Plant Pathogenic Bacteria , 2001, Springer Netherlands.

[78]  W Arber,et al.  Genetic variation: molecular mechanisms and impact on microbial evolution. , 2000, FEMS microbiology reviews.

[79]  P. Lawson,et al.  Clostridium gasigenes sp. nov., a psychrophile causing spoilage of vacuum-packed meat. , 2000, International journal of systematic and evolutionary microbiology.

[80]  Thiéry,et al.  Impact of crop management on intraspecific diversity of Pseudomonas corrugata in bulk soil. , 2000, FEMS microbiology ecology.

[81]  G. Vogels,et al.  Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from mangrove sediment. , 2000, International journal of systematic and evolutionary microbiology.

[82]  M. Marinus,et al.  Escherichia coli mutator genes. , 1999, Trends in microbiology.

[83]  R. Fani,et al.  Isolation and characterisation of a new antagonistic Burkholderia strain from the rhizosphere of healthy tomato plants. , 1999, Research in microbiology.

[84]  G. Storz,et al.  Small RNAs in Escherichia coli. , 1999, Trends in microbiology.

[85]  W. Liesack,et al.  Microbial diversity in soil: the need for a combined approach using molecular and cultivation techniques. , 1997 .

[86]  B. Tümmler,et al.  Genome organization of Pseudomonas stutzeri and resulting taxonomic and evolutionary considerations. , 1997, International journal of systematic bacteriology.

[87]  V. Stanisich,et al.  New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. , 1996, Microbiology.

[88]  D. Beyene,et al.  Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). , 1996, International journal of systematic bacteriology.

[89]  E. Stackebrandt,et al.  Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. , 1995, International journal of systematic bacteriology.

[90]  M. Vaneechoutte,et al.  Diversity and Genetic Relatedness within Genera Xanthomonas and Stenotrophomonas Using Restriction E , 1995 .

[91]  E. Mahenthiralingam,et al.  Burkholderia cepacia in cystic fibrosis. , 1995, The New England journal of medicine.

[92]  ScienceDirect FEMS microbiology reviews , 1993 .

[93]  J. Ley The Proteobacteria. Ribosomal RNA cistron similarities and bacterial taxonomy , 1992 .