A five-year climatological lightning characteristics of linear mesoscale convective systems over North China

[1]  Da‐Lin Zhang,et al.  Understanding the dynamical-microphysical-electrical processes associated with severe thunderstorms over the Beijing metropolitan region , 2020, Science China Earth Sciences.

[2]  Mateusz Taszarek,et al.  A 10-Year Radar-Based Climatology of Mesoscale Convective System Archetypes and Derechos in Poland , 2020, Monthly Weather Review.

[3]  X. Qie,et al.  Investigating Lightning Characteristics through a Supercell Storm by Comprehensive Coordinated Observations over North China , 2020, Advances in Atmospheric Sciences.

[4]  C. Price,et al.  Thunderstorm Trends over Africa , 2020, Journal of Climate.

[5]  Elise V. Schultz,et al.  An Evaluation of Relationships between Radar-Inferred Kinematic and Microphysical Parameters and Lightning Flash Rates in Alabama Storms , 2019 .

[6]  Lijun Yu,et al.  Total lightning signatures of thunderstorms and lightning jumps in hailfall nowcasting in the Beijing area , 2019 .

[7]  Juanzhen Sun,et al.  Comparison of Environmental and Mesoscale Characteristics of Two Types of Mountain‐to‐Plain Precipitation Systems in the Beijing Region, China , 2019, Journal of Geophysical Research: Atmospheres.

[8]  Hengyi Liu,et al.  Characteristics of Lightning Flashes Associated With the Charge Layer Near the 0 °C Isotherm in the Stratiform Region of Mesoscale onvective Systems , 2018, Journal of Geophysical Research: Atmospheres.

[9]  Weixin Xu,et al.  Convective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region , 2018, Journal of Climate.

[10]  Juanzhen Sun,et al.  The characteristics of weakly forced mountain‐to‐plain precipitation systems based on radar observations and high‐resolution reanalysis , 2017 .

[11]  Elise V. Schultz,et al.  Kinematic and Microphysical Significance of Lightning Jumps versus Non-Jump Increases in Total Flash Rate. , 2017, Weather and forecasting.

[12]  S. Miao,et al.  Synoptic analysis and urban signatures of a heavy rainfall on 7 August 2015 in Beijing , 2017 .

[13]  Yijun Zhang,et al.  Climatological Comparison of Small- and Large-Current Cloud-to-Ground Lightning Flashes over Southern China , 2016 .

[14]  Hongbo Zhang,et al.  Characteristics of a rocket‐triggered lightning flash with large stroke number and the associated leader propagation , 2014 .

[15]  Feng Gao,et al.  Diurnal evolution and distribution of warm‐season convective storms in different prevailing wind regimes over contiguous North China , 2014 .

[16]  Xiaoling Zhang,et al.  Organizational Modes of Mesoscale Convective Systems over Central East China , 2013 .

[17]  Xiushu Qie,et al.  Some characteristics of lightning activity and radiation source distribution in a squall line over north China , 2013 .

[18]  Dx Liu,et al.  Characteristics of lightning radiation source distribution and charge structure of squall line , 2013 .

[19]  D. MacGorman,et al.  Total Lightning Characteristics Relative to Radar and Satellite Observations of Oklahoma Mesoscale Convective Systems , 2013 .

[20]  Yihui Ding,et al.  The Beijing extreme rainfall of 21 July 2012: “Right results” but for wrong reasons , 2013 .

[21]  Nai-Yu Wang,et al.  Improving Geostationary Satellite Rainfall Estimates Using Lightning Observations: Underlying Lightning–Rainfall–Cloud Relationships , 2013 .

[22]  Feng Gao,et al.  Diurnal variations in convective storm activity over contiguous North China during the warm season based on radar mosaic climatology , 2012 .

[23]  S. Sarkar,et al.  Organizational modes of squall-type Mesoscale Convective Systems during premonsoon season over eastern India , 2012 .

[24]  Luiz A. T. Machado,et al.  Cloud-to-ground lightning and Mesoscale Convective Systems , 2011 .

[25]  Weixin Xu,et al.  Diurnal Variations of Precipitation, Deep Convection, and Lightning over and East of the Eastern Tibetan Plateau , 2011 .

[26]  G. Feng,et al.  The characteristics of cloud-to-ground lightning activity in hailstorms over northern China , 2009 .

[27]  W. Petersen,et al.  Total lightning activity as an indicator of updraft characteristics , 2008 .

[28]  W. Petersen,et al.  The relationship between lightning activity and ice fluxes in thunderstorms , 2008 .

[29]  R. Orville,et al.  Evolution of the total lightning structure in a leading‐line, trailing‐stratiform mesoscale convective system over Houston, Texas , 2008 .

[30]  William A. Gallus,et al.  Spring and Summer Severe Weather Reports over the Midwest as a Function of Convective Mode: A Preliminary Study , 2008 .

[31]  E. Mansell,et al.  Numerically Simulated Electrification and Lightning of the 29 June 2000 STEPS Supercell Storm , 2006 .

[32]  Eldo E. Ávila,et al.  Laboratory studies of the effect of cloud conditions on graupel/crystal charge transfer in thunderstorm electrification , 2006 .

[33]  Steven A. Rutledge,et al.  Submitted to: Journal of the Atmospheric Sciences , 2004 .

[34]  Eric C. Bruning,et al.  The Electrical Structure of Two Supercell Storms during STEPS , 2005 .

[35]  Eric C. Bruning,et al.  Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS) , 2005 .

[36]  N. Dotzek,et al.  Lightning activity related to satellite and radar observations of a mesoscale convective system over Texas on 7–8 April 2002 , 2005 .

[37]  Jerry M. Straka,et al.  Charge structure and lightning sensitivity in a simulated multicell thunderstorm , 2005 .

[38]  Guang-shu Zhang,et al.  The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau , 2005 .

[39]  Lawrence D. Carey,et al.  Lightning location relative to storm structure in a leading‐line, trailing‐stratiform mesoscale convective system , 2005 .

[40]  Richard H. Johnson,et al.  Simulated Convective Lines with Leading Precipitation. Part I: Governing Dynamics , 2004 .

[41]  Timothy J. Lang,et al.  Origins of positive cloud‐to‐ground lightning flashes in the stratiform region of a mesoscale convective system , 2004 .

[42]  Morris L. Weisman,et al.  “A Theory for Strong Long-Lived Squall Lines” Revisited , 2004 .

[43]  Tsutomu Takahashi,et al.  NOTES AND CORRESPONDENCE Reexamination of Riming Electrification in a Wind Tunnel , 2002 .

[44]  E. Williams,et al.  The Electrification of Severe Storms , 2001 .

[45]  Richard H. Johnson,et al.  Cloud-to-Ground Lightning in Linear Mesoscale Convective Systems , 2001 .

[46]  Richard H. Johnson,et al.  Organizational Modes of Midlatitude Mesoscale Convective Systems , 2000 .

[47]  Michael Davis,et al.  GPS‐based mapping system reveals lightning inside storms , 2000 .

[48]  Lawrence D. Carey,et al.  Electrical and multiparameter radar observations of a severe hailstorm , 1998 .

[49]  W. D. Rust,et al.  Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems , 1998 .

[50]  Kenneth L. Cummins,et al.  A Combined TOA/MDF Technology Upgrade of the U.S. National Lightning Detection Network , 1998 .

[51]  E. Williams,et al.  Sprites, ELF Transients, and Positive Ground Strokes , 1995, Science.

[52]  R. Fovell,et al.  The Temporal Behavior of Numerically Simulated Multicell-Type Storms. Part I. Modes of Behavior , 1995 .

[53]  W. D. Rust,et al.  Electrical structure and updraft speeds in thunderstorms over the southern Great Plains , 1995 .

[54]  Walter A. Petersen,et al.  Vertical Radar Reflectivity Structure and Cloud-to-Ground Lightning in the Stratiform Region of MCSs: Further Evidence for In Situ Charging in the Stratiform Region , 1994 .

[55]  M. Dixon,et al.  TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology , 1993 .

[56]  C. Saunders,et al.  A Review of Thunderstorm Electrification Processes , 1993 .

[57]  W. David Rust,et al.  Electrical and Kinematic Structure of the Stratiform Precipitation Region Trailing an Oklahoma Squall Line. , 1991 .

[58]  Robert A. Houze,et al.  Mesoscale Organization of Springtime Rainstorms in Oklahoma , 1990 .

[59]  Michael I. Biggerstaff,et al.  Interpretation of Doppler Weather Radar Displays of Midlatitude Mesoscale Convective Systems , 1989 .

[60]  W. D. Rust,et al.  Lightning propagation and flash density in squall lines as determined with radar , 1983 .

[61]  Tsutomu Takahashi,et al.  Riming Electrification as a Charge Generation Mechanism in Thunderstorms , 1978 .

[62]  L. Leslie,et al.  Numerical Simulations of the Microphysics and Electrification of the Weakly Electrified 9 February 1993 TOGA COARE Squall Line: Comparisons with Observations , 2008 .

[63]  L. Carey,et al.  2 USING WSR-88 D REFLECTIVITY FOR THE PREDICTION OF CLOUD-TO-GROUND LIGHTNING : A CENTRAL NORTH CAROLINA STUDY , 2004 .