Euler-Lagrange equations for composition functionals in calculus of variations on time scales

In this paper we consider the problem of the calculus of variations for a functional which is the composition of a certain scalar function $H$ with the delta integral of a vector valued field $f$, i.e., of the form $H (\int_{a}^{b}f(t,x^{\sigma}(t),x^{\Delta}(t))\Delta t)$. Euler-Lagrange equations, natural boundary conditions for such problems as well as a necessary optimality condition for isoperimetric problems, on a general time scale, are given. A number of corollaries are obtained, and several examples illustrating the new results are discussed in detail.

[1]  Martin Bohner CALCULUS OF VARIATIONS ON TIME SCALES , 2004 .

[2]  Delfim F. M. Torres,et al.  Calculus of variations on time scales with nabla derivatives , 2008, 0807.2596.

[3]  V. Lakshmikantham,et al.  Dynamic systems on measure chains , 1996 .

[4]  B. Brunt The calculus of variations , 2003 .

[5]  Ravi P. Agarwal,et al.  Sturm-Liouville eigenvalue problems on time scales , 1999, Appl. Math. Comput..

[6]  Thomas Ernst,et al.  The different tongues of q-calculus , 2008 .

[7]  Agnieszka B. Malinowska,et al.  Strong minimizers of the calculus of variations on time scales and the Weierstrass condition , 2009, Proceedings of the Estonian Academy of Sciences.

[8]  Delfim F. M. Torres,et al.  Remarks on the calculus of variations on time scales , 2007 .

[9]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[10]  Ferhan Merdivenci Atici,et al.  An application of time scales to economics , 2006, Math. Comput. Model..

[11]  Delfim F. M. Torres,et al.  Isoperimetric Problems of the Calculus of Variations on Time Scales , 2008, 0805.0278.

[12]  Vera Zeidan,et al.  Calculus of variations on time scales: weak local piecewise Crd1 solutions with variable endpoints , 2004 .

[13]  E. Castillo,et al.  COMPOSITION FUNCTIONALS IN CALCULUS OF VARIATIONS: APPLICATION TO PRODUCTS AND QUOTIENTS , 2008 .

[14]  Agnieszka B. Malinowska,et al.  F a S C I C U L I M a T H E M a T I C I , 2022 .

[15]  Agnieszka B. Malinowska,et al.  Necessary and sufficient conditions for local Pareto optimality on time scales , 2008 .

[16]  Ferhan Merdivenci Atici,et al.  A production-inventory model of HMMS on time scales , 2008, Appl. Math. Lett..

[17]  Agnieszka B. Malinowska,et al.  Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales , 2010, Appl. Math. Comput..

[18]  Delfim F. M. Torres,et al.  Integral Inequalities and Their Applications to the Calculus of Variations on Time Scales , 2010 .

[19]  Delfim F. M. Torres,et al.  Noether's theorem on time scales , 2008 .

[20]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[21]  Delfim F. M. Torres,et al.  Isoperimetric Problems on Time Scales with Nabla Derivatives , 2008, 0811.3650.

[22]  Agnieszka B. Malinowska,et al.  Natural boundary conditions in the calculus of variations , 2008, 0812.0705.

[23]  Delfim F. M. Torres,et al.  Higher-Order Calculus of Variations on Time Scales , 2007, 0706.3141.

[24]  Calvin D. Ahlbrandt,et al.  Partial differential equations on time scales , 2002 .