The generic dimension of the space of C 1 splines of degree d ≥8 on tetrahedral decompositions
暂无分享,去创建一个
[1] D. Ewing,et al. Rules governing the numbers of nodes and elements in a finite element mesh , 1970 .
[2] James R. Munkres,et al. Elements of algebraic topology , 1984 .
[3] Larry L. Schumaker,et al. The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1 , 1987 .
[4] C. D. Boor,et al. B-Form Basics. , 1986 .
[5] L. Schumaker. On the Dimension of Spaces Of Piecewise Polynomials in Two Variables , 1979 .
[6] L. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .
[7] Peter Alfeld,et al. A recursion formula for the dimension of super spline spaces of smoothness r and degree d>r2k , 1989 .
[8] P. Alfeld. Scattered data interpolation in three or more variables , 1989 .
[9] Mary Ellen Rudin,et al. An unshellable triangulation of a tetrahedron , 1958 .
[10] Larry L. Schumaker,et al. Super spline spaces of smoothnessr and degreed≥3r+2 , 1991 .
[11] G. Strang. Piecewise polynomials and the finite element method , 1973 .
[12] David W. Barnette,et al. Generating the triangulations of the projective plane , 1982, J. Comb. Theory, Ser. B.
[13] Charles K. Chui,et al. On smooth multivariate spline functions , 1983 .
[14] Hong Dong,et al. Spaces of bivariate spline functions over triangulation , 1991 .