On Quantum Channel Estimation with Minimal Resources

We determine the minimal experimental resources that ensure a unique solution in the estimation of trace-preserving quantum channels with both direct and convex optimization methods. A convenient parametrization of the constrained set is used to develop a globally converging Newton-type algorithm that ensures a physically admissible solution to the problem. Numerical simulations are provided to support the results, and indicate that the minimal experimental setting is sufficient to guarantee good estimates.

[1]  K. Lendi,et al.  Quantum Dynamical Semigroups and Applications , 1987 .

[2]  I. Chuang,et al.  Quantum Computation and Quantum Information: Entropy and information , 2010 .

[3]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[4]  Claudio Altafini,et al.  Coherent control of open quantum dynamical systems , 2004 .

[5]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .

[6]  Matteo G. A. Paris,et al.  Quorum of observables for universal quantum estimation , 2001 .

[7]  D. Petz Quantum Information Theory and Quantum Statistics , 2007 .

[8]  Daniel A. Lidar,et al.  Quantum Process Tomography: Resource Analysis of Different Strategies , 2007, quant-ph/0702131.

[9]  Martin Plesch,et al.  Process reconstruction: From unphysical to physical maps via maximum likelihood , 2005 .

[10]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[11]  Zdeněk Hradil,et al.  Maximum-likelihood estimation of quantum processes , 2001, OFC 2001.

[12]  D. D'Alessandro,et al.  Optimal control of two-level quantum systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[13]  Domenico D'Alessandro,et al.  Optimal control of two-level quantum systems , 2001, IEEE Trans. Autom. Control..

[14]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[15]  D. D’Alessandro Introduction to Quantum Control and Dynamics , 2007 .

[16]  D. Kaszlikowski,et al.  Minimal qubit tomography , 2004, quant-ph/0405084.

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  J. P. Woerdman,et al.  Maximum-likelihood estimation of Mueller matrices. , 2005, Optics letters.

[19]  Giuliano Benenti,et al.  Simple representation of quantum process tomography , 2009, 0905.0578.

[20]  P. Kosmol,et al.  Optimierung und Approximation , 2010 .

[21]  G. Vallone,et al.  Experimental quantum process tomography of non-trace-preserving maps , 2010, 1008.5334.

[22]  J. Swoboda Time-optimal Control of Spin Systems , 2006, quant-ph/0601131.

[23]  P. Villoresi,et al.  Experimental verification of the feasibility of a quantum channel between space and Earth , 2008, 0803.1871.

[24]  Editors , 1986, Brain Research Bulletin.

[25]  V. Belavkin Towards the theory of control in observable quantum systems , 2004, quant-ph/0408003.

[26]  Lorenza Viola,et al.  Analysis and synthesis of attractive quantum Markovian dynamics , 2008, Autom..

[27]  Massimiliano F. Sacchi Maximum-likelihood reconstruction of completely positive maps , 2001 .

[28]  Claudio Altafini,et al.  Feedback Stabilization of Isospectral Control Systems on Complex Flag Manifolds: Application to Quantum Ensembles , 2007, IEEE Transactions on Automatic Control.

[29]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[30]  Howard E. Brandt,et al.  Quantum computation and information : AMS Special Session Quantum Computation and Information, January 19-21, 2000, Washington, D.C. , 2002 .

[31]  Hideo Mabuchi,et al.  Robust control in the quantum domain , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[32]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[33]  Timothy F. Havel,et al.  Robust method for estimating the Lindblad operators of a dissipative quantum process from measurements of the density operator at multiple time points , 2003 .

[34]  Hideo Mabuchi,et al.  Principles and applications of control in quantum systems , 2005 .

[35]  Herschel Rabitz,et al.  Control of molecular motion , 1996, Proc. IEEE.

[36]  A. Holevo Statistical structure of quantum theory , 2001 .