Three‐dimensional remeshed smoothed particle hydrodynamics for the simulation of isotropic turbulence

Summary We present a remeshed particle-mesh method for the simulation of three-dimensional compressible turbulent flow. The method is related to the mesh free smoothed particle hydrodynamic (SPH) method, but the present method introduces a mesh for efficient calculation of the pressure gradient, and laminar and turbulent diffusion. In addition, the mesh is used to remesh (reorganise uniformly) the particles to ensure a regular particle distribution and convergence of the method. The accuracy of the presented methodology is tested for a number of benchmark problems involving two- and three-dimensional Taylor-Green flow, thin double shear layer, and three-dimensional isotropic turbulence. Two models were implemented, direct numerical simulations, and Smagorinsky model. Taking advantage of the Lagrangian advection, and the finite difference efficiency, the method is capable of providing quality simulations while maintaining its robustness and versatility. This article is protected by copyright. All rights reserved.

[1]  S. Cummins,et al.  An SPH Projection Method , 1999 .

[2]  S. Shao,et al.  INCOMPRESSIBLE SPH METHOD FOR SIMULATING NEWTONIAN AND NON-NEWTONIAN FLOWS WITH A FREE SURFACE , 2003 .

[3]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[4]  J. Morris Simulating surface tension with smoothed particle hydrodynamics , 2000 .

[5]  S. Pope A more general effective-viscosity hypothesis , 1975, Journal of Fluid Mechanics.

[6]  J. Monaghan Simulating Free Surface Flows with SPH , 1994 .

[7]  Petros Koumoutsakos,et al.  Flow past an Impulsively Started Cylinder , 1995 .

[8]  L. Lucy A numerical approach to the testing of the fission hypothesis. , 1977 .

[9]  Petros Koumoutsakos,et al.  Direct numerical simulations of unsteady separated flows using vortex methods , 1993 .

[10]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[11]  Eugene Fiume,et al.  Depicting fire and other gaseous phenomena using diffusion processes , 1995, SIGGRAPH.

[12]  Anthony Peter Whitworth,et al.  A new prescription for viscosity in smoothed particle hydrodynamics. , 1996 .

[13]  Petros Koumoutsakos,et al.  Remeshed smoothed particle hydrodynamics for the simulation of viscous and heat conducting flows , 2002 .

[14]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[15]  Nikolaus A. Adams,et al.  A transport-velocity formulation for smoothed particle hydrodynamics , 2013, J. Comput. Phys..

[16]  Yi Li,et al.  A public turbulence database cluster and applications to study Lagrangian evolution of velocity increments in turbulence , 2008, 0804.1703.

[17]  T. Elizarova,et al.  Simulation of laminar–turbulent transition in compressible Taylor–Green flow basing on quasi-gas dynamic equations , 2014 .

[18]  Piotr K. Smolarkiewicz,et al.  On spurious vortical structures , 2001 .

[19]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[20]  Petros Koumoutsakos,et al.  Inviscid Axisymmetrization of an Elliptical Vortex , 1997 .

[21]  M. Minion,et al.  Performance of Under-resolved Two-Dimensional Incompressible Flow , 1995 .

[22]  P. Koumoutsakos MULTISCALE FLOW SIMULATIONS USING PARTICLES , 2005 .

[23]  Petros Koumoutsakos,et al.  Direct Numerical Simulations using Vortex Methods , 1993 .

[24]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[25]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[26]  A. Kolmogorov The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[27]  P. Koumoutsakos,et al.  PMH: Particle Mesh Hydrodynamics , 2007 .

[28]  P. Moin,et al.  Numerical Simulation of Turbulent Flows , 1984 .

[29]  S. Miyama,et al.  Numerical Simulation of Viscous Flow by Smoothed Particle Hydrodynamics , 1994 .

[30]  Diego Rossinelli,et al.  Vortex methods for incompressible flow simulations on the GPU , 2008, The Visual Computer.

[31]  Petros Koumoutsakos,et al.  A comparison of vortex and pseudo-spectral methods for the simulation of periodic vortical flows at high Reynolds numbers , 2011, J. Comput. Phys..

[32]  梶島 岳夫 乱流の数値シミュレーション = Numerical simulation of turbulent flows , 2003 .

[33]  Benedict D. Rogers,et al.  Numerical Modeling of Water Waves with the SPH Method , 2006 .

[34]  J. Monaghan SPH compressible turbulence , 2002, astro-ph/0204118.

[35]  Martin Robinson,et al.  Direct numerical simulation of decaying two‐dimensional turbulence in a no‐slip square box using smoothed particle hydrodynamics , 2011, 1101.2240.

[36]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[37]  Petros Koumoutsakos,et al.  Particle Mesh Hydrodynamics for Astrophysics Simulations , 2007 .

[38]  Damien Violeau,et al.  Numerical modelling of complex turbulent free‐surface flows with the SPH method: an overview , 2007 .

[39]  N. Adams,et al.  Analysis of intermittency in under-resolved smoothed-particle-hydrodynamics direct numerical simulations of forced compressible turbulence. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  G. Taylor,et al.  Mechanism of the production of small eddies from large ones , 1937 .

[41]  J. Monaghan Particle methods for hydrodynamics , 1985 .

[42]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .