Generalized Stirling Numbers, Convolution Formulae and p, q-Analogues
暂无分享,去创建一个
[1] H. Gould. The $q$-Stirling numbers of first and second kinds , 1961 .
[2] Leonard Carlitz,et al. $q$-Bernoulli numbers and polynomials , 1948 .
[3] Luis Verde-Star,et al. Interpolation and Combinatorial Functions , 1988 .
[4] Thomas A. Dowling,et al. A class of geometric lattices based on finite groups , 1973 .
[5] Anne de Médicis,et al. A unified combinatorial approach for q- (and p,q-) Stirling numbers , 1993 .
[6] Leonard Carlitz,et al. On abelian fields , 1933 .
[7] Lynne M. Butler,et al. The q-log-concavity of q-binomial coefficients , 1990, J. Comb. Theory, Ser. A.
[8] Stephen C Milne. Restricted growth functions and incidence relations of the lattice of partitions of an n-set , 1977 .
[9] Markos V. Koutras,et al. Non-central stirling numbers and some applications , 1982, Discret. Math..
[10] Richard P. Stanley,et al. Finite lattices and Jordan-Hölder sets , 1974 .
[11] L. Habsieger. Inequalities between elementary symmetric functions: applications to log-concavity problems , 1993 .
[12] Pierre Leroux,et al. Reduced matrices and q-log-concavity properties of q-Stirling numbers , 1990, J. Comb. Theory A.
[13] Bruce E. Sagan. LOG CONCAVE SEQUENCES OF SYMMETRIC FUNCTIONS AND ANALOGS OF THE JACOBI-TRUDI DETERMINANTS , 1992 .