Soliton perturbations and the random Kepler problem

Abstract We consider the influence of randomly varying parameters on the propagation of solitons for the one-dimensional nonlinear Schrodinger equation. This models, for example, optical soliton propagation in a fiber whose properties vary with distance along the fiber. By using an averaged Lagrangian approach we obtain a system of stochastic modulation equations for the evolution of the soliton parameters, which takes the form of a randomly perturbed Kepler problem. We use the action-angle formulation of the Kepler problem to calculate the statistics of the escape time. The mean escape time for the Kepler problem corresponds, in the optical context, to the expected distance until the soliton disintegrates.

[1]  H. H. Chen,et al.  Stability of solitons in randomly varying birefringent fibers. , 1991, Optics letters.

[2]  John N. Elgin,et al.  Stochastic perturbations of optical solitons. , 1993, Optics letters.

[3]  B. Baizakov,et al.  Propagation of chirped optical solitons in fibers with randomly varying parameters , 1997 .

[4]  T. Mckeown Mechanics , 1970, The Mathematics of Fluid Flow Through Porous Media.

[5]  Yuji Kodama,et al.  Solitons in optical communications , 1995 .

[6]  Mietek Lisak,et al.  Asymptotic propagation properties of pulses in a soliton-based optical-fiber communication system , 1988 .

[7]  J. W. Humberston Classical mechanics , 1980, Nature.

[8]  Gadi Fibich,et al.  Self-Focusing in the Perturbed and Unperturbed Nonlinear Schrödinger Equation in Critical Dimension , 1999, SIAM J. Appl. Math..

[9]  Fatkhulla Kh. Abdullaev,et al.  Optical Solitons , 2014 .

[10]  S. Gredeskul,et al.  Propagation and scattering of nonlinear waves in disordered systems , 1992 .

[11]  A. Hasegawa Solitons in optical communications , 1995 .

[12]  Smyth,et al.  Soliton evolution and radiation loss for the nonlinear Schrödinger equation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[13]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[14]  Jared C. Bronski,et al.  Nonlinear Wave Propagation in a Disordered Medium , 1998 .

[15]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[16]  William L. Kath,et al.  Dynamics of optical pulses in randomly birefringent fibers , 1992 .

[17]  V. Karpman,et al.  Soliton Evolution in the Presence of Perturbation , 1979 .

[18]  J. Runnenburg PROBABILITY THEORY AND ITS APPLICATIONS , 1985 .

[19]  B. Malomed Resonant transmission of a chirped soliton in a long optical fiber with periodic amplification , 1996 .

[20]  J. Bronski Nonlinear Scattering and Analyticity Properties of Solitons , 1998 .