Data-driven trajectory smoothing

Motivated by the increasing availability of large collections of noisy GPS traces, we present a new data-driven framework for smoothing trajectory data. The framework, which can be viewed of as a generalization of the classical moving average technique, naturally leads to efficient algorithms for various smoothing objectives. We analyze an algorithm based on this framework and provide connections to previous smoothing techniques. We implement a variation of the algorithm to smooth an entire collection of trajectories and show that it performs well on both synthetic data and massive collections of GPS traces.

[1]  Xing Xie,et al.  T-drive: driving directions based on taxi trajectories , 2010, GIS '10.

[2]  Bernhard Mitschang,et al.  Usability analysis of compression algorithms for position data streams , 2010, GIS '10.

[3]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[4]  Frédéric Chazal,et al.  Geometric Inference for Probability Measures , 2011, Found. Comput. Math..

[5]  M. Wand,et al.  Multivariate Locally Weighted Least Squares Regression , 1994 .

[6]  Piotr Indyk,et al.  Approximate Nearest Neighbor: Towards Removing the Curse of Dimensionality , 2012, Theory Comput..

[7]  Sunil Arya,et al.  ANN: library for approximate nearest neighbor searching , 1998 .

[8]  D. Kendall SHAPE MANIFOLDS, PROCRUSTEAN METRICS, AND COMPLEX PROJECTIVE SPACES , 1984 .

[9]  Sariel Har-Peled A replacement for Voronoi diagrams of near linear size , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[10]  Xing Xie,et al.  Learning travel recommendations from user-generated GPS traces , 2011, TIST.

[11]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[12]  Kasper Green Larsen,et al.  Cleaning massive sonar point clouds , 2010, GIS '10.

[13]  Chang-Tien Lu,et al.  Multivariate Spatial Outlier Detection , 2004, Int. J. Artif. Intell. Tools.

[14]  Amos Gilat,et al.  Matlab, An Introduction With Applications , 2003 .

[15]  F. Takens Detecting strange attractors in turbulence , 1981 .

[16]  Shashi Shekhar,et al.  Detecting graph-based spatial outliers , 2002, Intell. Data Anal..

[17]  Mikael Jern,et al.  GeoAnalytics visual inquiry and filtering tools in parallel coordinates plots , 2007, GIS.

[18]  Alia I. Abdelmoty,et al.  Improving the Quality of GPS-based Personal Gazetteers , 2009 .

[19]  R. Bruntrup,et al.  Incremental map generation with GPS traces , 2005, Proceedings. 2005 IEEE Intelligent Transportation Systems, 2005..

[20]  Shashi Shekhar,et al.  A Unified Approach to Detecting Spatial Outliers , 2003, GeoInformatica.

[21]  T. Hastie,et al.  Principal Curves , 2007 .

[22]  Monika Sester,et al.  Integration of GPS traces with road map , 2010, IWCTS '10.

[23]  F. Schlenk Proof of Theorem 4 , 2005 .

[24]  Xu Li,et al.  META: A Mobility Model of MEtropolitan TAxis Extracted from GPS Traces , 2010, 2010 IEEE Wireless Communication and Networking Conference.

[25]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[26]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[27]  Yogish Sabharwal,et al.  Nearest Neighbors Search Using Point Location in Balls with Applications to Approximate Voronoi Decompositions , 2002, FSTTCS.

[28]  R. Varga,et al.  Proof of Theorem 4 , 1983 .

[29]  Arnold P. Boedihardjo,et al.  GLS-SOD: a generalized local statistical approach for spatial outlier detection , 2010, KDD '10.

[30]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[31]  Hui Lin,et al.  B-Spline curve smoothing under position constraints for line generalisation , 2006, GIS '06.

[32]  Bernt Øksendal,et al.  Stochastic differential equations (3rd ed.): an introduction with applications , 1992 .

[33]  Leonidas J. Guibas,et al.  Approximate Map Matching with respect to the Fréchet Distance , 2011, ALENEX.

[34]  Anand V. Panangadan,et al.  A variant of particle filtering using historic datasets for tracking complex geospatial phenomena , 2010, GIS '10.

[35]  Kenneth L. Clarkson,et al.  A Randomized Algorithm for Closest-Point Queries , 1988, SIAM J. Comput..

[36]  Xing Xie,et al.  Smart Itinerary Recommendation Based on User-Generated GPS Trajectories , 2010, UIC.

[37]  18th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS 2010, November 3-5, 2010, San Jose, CA, USA, Proceedings , 2010, GIS.

[38]  Haixun Wang,et al.  Leveraging spatio-temporal redundancy for RFID data cleansing , 2010, SIGMOD Conference.

[39]  Chang-Tien Lu,et al.  On Detecting Spatial Outliers , 2008, GeoInformatica.

[40]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[41]  Qingquan Li,et al.  Activity identification from GPS trajectories using spatial temporal POIs' attractiveness , 2010, LBSN '10.

[42]  Richard S. Varga,et al.  Proof of Theorem 5 , 1983 .

[43]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[44]  M. Okamoto Some inequalities relating to the partial sum of binomial probabilities , 1959 .

[45]  Chang-Tien Lu,et al.  Spatial outlier detection: random walk based approaches , 2010, GIS '10.

[46]  Josep Lladós,et al.  A mean string algorithm to compute the average among a set of 2D shapes , 2002, Pattern Recognit. Lett..

[47]  Xike Xie,et al.  Cleaning uncertain data with quality guarantees , 2008, Proc. VLDB Endow..

[48]  Heng Tao Shen,et al.  Discovering popular routes from trajectories , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[49]  John Krumm,et al.  From GPS traces to a routable road map , 2009, GIS.

[50]  John Langford,et al.  Cover trees for nearest neighbor , 2006, ICML.