Structural basis for antibiotic action of the B1 antivitamin 2′-methoxy-thiamine

[1]  K. Tittmann,et al.  Low-barrier hydrogen bonds in enzyme cooperativity , 2019, Nature.

[2]  K. Fisher,et al.  Enzymatic control of cycloadduct conformation ensures reversible 1,3 dipolar cycloaddition in a prFMN dependent decarboxylase , 2019, Nature Chemistry.

[3]  Matteo Aldeghi,et al.  Accurate Estimation of Ligand Binding Affinity Changes upon Protein Mutation , 2018, ACS central science.

[4]  Sebastian Kelm,et al.  Sphinx: merging knowledge‐based and ab initio approaches to improve protein loop prediction , 2017, Bioinform..

[5]  K. Tittmann,et al.  Theoretical Studies of the Electronic Absorption Spectra of Thiamin Diphosphate in Pyruvate Decarboxylase. , 2017, Biochemistry.

[6]  Frank Noé,et al.  HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. , 2016, Journal of chemical theory and computation.

[7]  T. Begley,et al.  Competence of Thiamin Diphosphate-Dependent Enzymes with 2'-Methoxythiamin Diphosphate Derived from Bacimethrin, a Naturally Occurring Thiamin Anti-vitamin. , 2016, Biochemistry.

[8]  Berk Hess,et al.  GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers , 2015 .

[9]  T. Begley The Mechanistic Enzymology of Thiamin Biosynthesis , 2015 .

[10]  R. Kluger Catalyzing decarboxylation by taming carbon dioxide , 2015 .

[11]  Bert L. de Groot,et al.  pmx: Automated protein structure and topology generation for alchemical perturbations , 2014, J. Comput. Chem..

[12]  P. Neumann,et al.  Marvels of enzyme catalysis at true atomic resolution: distortions, bond elongations, hidden flips, protonation states and atom identities. , 2014, Current opinion in structural biology.

[13]  K. Tittmann Sweet siblings with different faces: the mechanisms of FBP and F6P aldolase, transaldolase, transketolase and phosphoketolase revisited in light of recent structural data. , 2014, Bioorganic chemistry.

[14]  P. Nordlund,et al.  The cellular thermal shift assay for evaluating drug target interactions in cells , 2014, Nature Protocols.

[15]  Wayne F Anderson,et al.  Adherence to Bürgi-Dunitz stereochemical principles requires significant structural rearrangements in Schiff-base formation: insights from transaldolase complexes. , 2014, Acta crystallographica. Section D, Biological crystallography.

[16]  E. Pai,et al.  Substrate distortion contributes to the catalysis of orotidine 5'-monophosphate decarboxylase. , 2013, Journal of the American Chemical Society.

[17]  P. Neumann,et al.  Sub-ångström-resolution crystallography reveals physical distortions that enhance reactivity of a covalent enzymatic intermediate. , 2013, Nature chemistry.

[18]  P. Neumann,et al.  Observation of a stable carbene at the active site of a thiamin enzyme. , 2013, Nature chemical biology.

[19]  M. Mack,et al.  Flavoproteins Are Potential Targets for the Antibiotic Roseoflavin in Escherichia coli , 2013, Journal of bacteriology.

[20]  Wim F Vranken,et al.  ACPYPE - AnteChamber PYthon Parser interfacE , 2012, BMC Research Notes.

[21]  W. Gärtner,et al.  The antibiotics roseoflavin and 8-demethyl-8-amino-riboflavin from Streptomyces davawensis are metabolized by human flavokinase and human FAD synthetase. , 2011, Biochemical pharmacology.

[22]  P. Neumann,et al.  Twisted Schiff base intermediates and substrate locale revise transaldolase mechanism. , 2011, Nature chemical biology.

[23]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[24]  C. Parthier,et al.  The Crystal Structure of Human Transketolase and New Insights into Its Mode of Action* , 2010, The Journal of Biological Chemistry.

[25]  J. Collins,et al.  How antibiotics kill bacteria: from targets to networks , 2010, Nature Reviews Microbiology.

[26]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[27]  W. Kabsch XDS , 2010, Acta crystallographica. Section D, Biological crystallography.

[28]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[29]  F. Jordan,et al.  Reaction mechanisms of thiamin diphosphate enzymes: defining states of ionization and tautomerization of the cofactor at individual steps , 2009, The FEBS journal.

[30]  Ronald R. Breaker,et al.  Roseoflavin is a natural antibacterial compound that binds to FMN riboswitches and regulates gene expression , 2009, RNA biology.

[31]  K. Tittmann,et al.  Thiamin diphosphate catalysis: enzymic and nonenzymic covalent intermediates. , 2008, Chemical reviews.

[32]  A. Steinmetz,et al.  Glyoxylate carboligase lacks the canonical active site glutamate of thiamine-dependent enzymes. , 2008, Nature chemical biology.

[33]  M. Weiss,et al.  Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate. , 2007, Biochemistry.

[34]  Gerhard Klebe,et al.  PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations , 2007, Nucleic Acids Res..

[35]  V. Hornak,et al.  Comparison of multiple Amber force fields and development of improved protein backbone parameters , 2006, Proteins.

[36]  A. Alanis,et al.  Resistance to antibiotics: are we in the post-antibiotic era? , 2005, Archives of medical research.

[37]  B. Luisi,et al.  A Molecular Switch and Proton Wire Synchronize the Active Sites in Thiamine Enzymes , 2004, Science.

[38]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[39]  Michael R. Shirts,et al.  Equilibrium free energies from nonequilibrium measurements using maximum-likelihood methods. , 2003, Physical review letters.

[40]  T. C. Bruice,et al.  The near attack conformation approach to the study of the chorismate to prephenate reaction , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Frank Jordan,et al.  NMR analysis of covalent intermediates in thiamin diphosphate enzymes. , 2003, Biochemistry.

[42]  E. Ciszak,et al.  Structural Basis for Flip-Flop Action of Thiamin Pyrophosphate-dependent Enzymes Revealed by Human Pyruvate Dehydrogenase* , 2003, Journal of Biological Chemistry.

[43]  S. Saha,et al.  The mechanism of action of bacimethrin, a naturally occurring thiamin antimetabolite. , 2001, Bioorganic & medicinal chemistry letters.

[44]  A. Fersht Structure and mechanism in protein science , 1998 .

[45]  G. Schneider,et al.  Crystallography and mutagenesis of transketolase: mechanistic implications for enzymatic thiamin catalysis. , 1998, Biochimica et biophysica acta.

[46]  C. Jarzynski Equilibrium free-energy differences from nonequilibrium measurements: A master-equation approach , 1997, cond-mat/9707325.

[47]  G. Schneider,et al.  How Thiamine Diphosphate Is Activated in Enzymes , 1997, Science.

[48]  A. Warshel,et al.  Energy considerations show that low-barrier hydrogen bonds do not offer a catalytic advantage over ordinary hydrogen bonds. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[50]  W. Cleland,et al.  Low-barrier hydrogen bonds and enzymic catalysis. , 1994, Science.

[51]  W N Hunter,et al.  Structure of trypanothione reductase from Crithidia fasciculata at 2.6 A resolution; enzyme-NADP interactions at 2.8 A resolution. , 1994, Acta crystallographica. Section D, Biological crystallography.

[52]  P. Nixon,et al.  Reconstitution of holotransketolase is by a thiamin-diphosphate-magnesium complex. , 1993, European journal of biochemistry.

[53]  G. Schneider,et al.  A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. , 1993, Structure.

[54]  A. Zeeck,et al.  Metabolic products of microorganisms. 239. Bacimethrin isolated from Streptomyces albus identification, derivatives, synthesis and biological properties. , 1987, The Journal of antibiotics.

[55]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[56]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[57]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[58]  C. Drewke,et al.  Ginkgo biloba and ginkgotoxin. , 2010, Journal of natural products.

[59]  K. Wada,et al.  Food Poisoning by Ginkgo biloba Seeds , 1997 .

[60]  P A Kollman,et al.  On low-barrier hydrogen bonds and enzyme catalysis. , 1995, Science.

[61]  N. Oppenheimer,et al.  Structure and mechanism , 1989 .

[62]  J. Dunitz,et al.  Stereochemistry of reaction paths at carbonyl centres , 1974 .

[63]  R. Miura,et al.  Letter: Roseoflavin, a new antimicrobial pigment from Streptomyces. , 1974, The Journal of antibiotics.

[64]  K. Matsui,et al.  ROSEOFLAVIN, A NEW ANTIMICROBIAL PIGMENT FROM STREPTOMYCES , 1974 .