Performance Improvement of the QCELP using an Efficient LSF Coding

The hydrophones is mounted in many applications on a vibrating surface and functions as an underwater acoustic signal receiver without sensing the vibrations from the mounting surface. However, their performance is usually degraded by the interference of exterior noises such as acoustic cavitation in water stream, host structural vibration in the hull, and propeller motions. This paper describes the design and evaluation of a self noise suppressing hydrophones which shows very poor sensitivity to the external noises, first, effects of the external noise on the its receiver performance is simulated with finite element method(FEM). Second, the geometrical variations are implemented on the original structure that include additional air pockets and acoustic walls which work as acoustic shied or scatter of the noises. The results show that the effect of the external noise is the most significant when it is applied near to the bottom of the side wall of the hydrophones. The transverse noise induced by the outside water flow is isolated most effectively when a thin compliant (damping) layer combined with two air pockets is inserted to the circumference of the nose. Noise level is reduced about fifty nine percent of that of the original structure.