Representations of the multi-qubit Clifford group

The Clifford group is a fundamental structure in quantum information with a wide variety of applications. We discuss the tensor representations of the $q$-qubit Clifford group, which is defined as the normalizer of the $q$-qubit Pauli group in $U(2^q)$. In particular, we characterize all irreducible subrepresentations of the two-copy representation $\varphi^{\otimes2}$ of the Clifford group on the matrix space $\mathbb{C}^{d\times d}\otimes \mathbb{C}^{d\times d}$ with $d=2^q$. In an upcoming companion paper we applied this result to cut down the number of samples necessary to perform randomised benchmarking, a method for characterising quantum systems.

[1]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[2]  Christoph Dankert,et al.  Exact and approximate unitary 2-designs and their application to fidelity estimation , 2009 .

[3]  Huangjun Zhu Multiqubit Clifford groups are unitary 3-designs , 2015, 1510.02619.

[4]  Markus Grassl,et al.  The monomial representations of the Clifford group , 2011, Quantum Inf. Comput..

[5]  Steven T. Flammia,et al.  Randomized benchmarking with confidence , 2014, 1404.6025.

[6]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[7]  R. Goodman,et al.  Symmetry, Representations, and Invariants , 2009 .

[8]  Joseph Emerson,et al.  Scalable and robust randomized benchmarking of quantum processes. , 2010, Physical review letters.

[9]  Zak Webb,et al.  The Clifford group forms a unitary 3-design , 2015, Quantum Inf. Comput..

[10]  Jonas Helsen,et al.  Multiqubit randomized benchmarking using few samples , 2017, Physical Review A.

[11]  I. Ganev Notes for ‘ Representations of Finite Groups , 2012 .

[12]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[13]  J. M. Farinholt,et al.  An ideal characterization of the Clifford operators , 2013, 1307.5087.

[14]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[15]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[16]  Markus Grassl,et al.  The Clifford group fails gracefully to be a unitary 4-design , 2016, 1609.08172.

[17]  R. A. Low Large deviation bounds for k-designs , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  D. Gross,et al.  Evenly distributed unitaries: On the structure of unitary designs , 2006, quant-ph/0611002.

[19]  Debbie W. Leung,et al.  Quantum data hiding , 2002, IEEE Trans. Inf. Theory.