Collimated jets from the first core

We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations demon- strating the production of collimated jets during collapse of 1 Mmolecular cloud cores to form the 'first hydrostatic core' in low-mass star formation. Recently, a number of candidate first-core objects have been observed, including L1448 IRS2E, L1451-mm and Per-Bolo 58, although it is not yet clear that these are first hydrostatic cores. Recent observations of Per-Bolo 58 in particular appear to show collimated, bipolar outflows which are inconsistent with pre- vious theoretical expectations. We show that low-mass first cores can indeed produce tightly collimated jets (opening angles 10 ◦ ) with speeds of ∼2-7 km s −1 , consistent with some of the observed candidates. We have also demonstrated, for the first time, that such phenomena can be successfully captured in SPMHD simulations.

[1]  I. A. Bonnell,et al.  Modelling accretion in protobinary systems , 1995 .

[2]  K. Tomisaka Collapse of Rotating Magnetized Molecular Cloud Cores and Mass Outflows , 2001, astro-ph/0105527.

[3]  Daniel J. Price SPLASH: An Interactive Visualisation Tool for Smoothed Particle Hydrodynamics Simulations , 2007, Publications of the Astronomical Society of Australia.

[4]  L. Ho,et al.  THE IMPACT OF GALAXY INTERACTIONS ON ACTIVE GALACTIC NUCLEUS ACTIVITY IN zCOSMOS , 2011, 1109.1292.

[5]  Daniel J. Price,et al.  The impact of magnetic fields on single and binary star formation , 2007, astro-ph/0702410.

[6]  R. Blandford,et al.  Hydromagnetic flows from accretion discs and the production of radio jets , 1982 .

[7]  Qizhou Zhang,et al.  L1448 IRS2E: A CANDIDATE FIRST HYDROSTATIC CORE , 2010, 1004.2443.

[8]  G. Fuller,et al.  Star formation in Perseus III. Outflows , 2007, 0706.1724.

[9]  Hirohiko Masunaga,et al.  A Radiation Hydrodynamic Model for Protostellar Collapse. I. The First Collapse , 1998 .

[10]  A. Boss,et al.  Protostars and Planets VI , 2000 .

[11]  Daniel J. Price,et al.  Smoothed particle magnetohydrodynamics - III. Multidimensional tests and the B = 0 constraint , 2005, astro-ph/0509083.

[12]  M. Dunham,et al.  A CANDIDATE DETECTION OF THE FIRST HYDROSTATIC CORE , 2010, 1009.0536.

[13]  S. Inutsuka,et al.  High- and Low-Velocity Magnetized Outflows in the Star Formation Process in a Gravitationally Collapsing Cloud , 2008 .

[14]  Ralph E. Pudritz,et al.  Outflows and Jets from Collapsing Magnetized Cloud Cores , 2005, astro-ph/0508374.

[15]  L. Spitzer,et al.  Note on the collapse of magnetic interstellar clouds. , 1976 .

[16]  Daniel J. Price Smoothed particle hydrodynamics and magnetohydrodynamics , 2010, J. Comput. Phys..

[17]  P. Hennebelle,et al.  Magnetic processes in a collapsing dense core I. Accretion and ejection , 2007, 0709.2886.

[18]  Richard B. Larson,et al.  Numerical Calculations of the Dynamics of a Collapsing Proto-Star , 1969 .

[19]  M. Dunham,et al.  DETECTION OF A BIPOLAR MOLECULAR OUTFLOW DRIVEN BY A CANDIDATE FIRST HYDROSTATIC CORE , 2011, 1108.1342.

[20]  A. Boss,et al.  Spectral energy of first protostellar cores: Detecting 'class -I' protostars with ISO and SIRTF , 1995 .

[21]  Collapse of a Molecular Cloud Core to Stellar Densities: The First Three-dimensional Calculations , 1998, astro-ph/9810397.

[22]  R. Teyssier,et al.  Protostellar collapse: radiative and magnetic feedbacks on small-scale fragmentation , 2009, Astronomy and Astrophysics.

[23]  Enrico Camporeale,et al.  Numerical modeling of space plasma flows , 2009 .

[24]  M. Bate Collapse of a molecular cloud core to stellar densities: the formation and evolution of pre‐stellar discs , 2011, 1108.0009.

[25]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[26]  Daniel J. Price,et al.  The effect of magnetic fields on star cluster formation , 2008, 0801.3293.

[27]  Shu-ichiro Inutsuka,et al.  A Radiation Hydrodynamic Model for Protostellar Collapse. II. The Second Collapse and the Birth of a Protostar , 2000 .

[28]  R. Nishi,et al.  Mechanism of Magnetic Flux Loss in Molecular Clouds , 2002, astro-ph/0203223.

[29]  J. Foster,et al.  THE ENIGMATIC CORE L1451-mm: A FIRST HYDROSTATIC CORE? OR A HIDDEN VeLLO? , 2011, 1109.1207.

[30]  Kengo Tomida,et al.  EXPOSED LONG-LIFETIME FIRST CORE: A NEW MODEL OF FIRST CORES BASED ON RADIATION HYDRODYNAMICS , 2010, 1011.4951.

[31]  Daniel J. Price,et al.  Inefficient star formation: the combined effects of magnetic fields and radiative feedback , 2009, 0904.4071.

[32]  D Lynden-Bell On why discs generate magnetic towers and collimate jets , 2003 .

[33]  S. Inutsuka,et al.  Second Core Formation and High-Speed Jets: Resistive Magnetohydrodynamic Nested Grid Simulations , 2006, astro-ph/0603456.

[34]  J. Trulsen,et al.  Regularized Smoothed Particle Hydrodynamics: A New Approach to Simulating Magnetohydrodynamic Shocks , 2001 .

[35]  R. Klessen,et al.  Magnetic fields during the early stages of massive star formation – II. A generalized outflow criterion , 2011, 1109.4379.

[36]  R. Pudritz,et al.  Three-dimensional Simulations of Jets from Keplerian Disks: Self-regulatory Stability , 2002, astro-ph/0205465.

[37]  J. Bally,et al.  HERBIG-HARO FLOWS: Probes of Early Stellar Evolution , 2001 .

[38]  L. Mestel Stellar magnetism , 1999 .

[39]  M. Bate,et al.  Resolution requirements for smoothed particle hydrodynamics calculations with self-gravity , 1997 .

[40]  K. Keil,et al.  Protostars and Planets V , 2007 .