On 2-rainbow domination of generalized Petersen graphs

Abstract Let γ r 2 ( G ) be the 2-rainbow domination number of a graph G . In our work, we solve an open question for 2-rainbow domination number of general Petersen graphs P ( n , k ) . In addition, we proved that γ r 2 ( P ( n , k ) ) = n for n ≤ 12 , γ r 2 ( P ( n , 1 ) ) = n for n ≥ 5 , and γ r 2 ( P ( 2 k + 2 , k ) ) = 2 k + 2 for k ≥ 2 .

[1]  Xiangwen Li,et al.  A constructive characterization of total domination vertex critical graphs , 2009, Discret. Math..

[2]  Chiun-Chieh Hsu,et al.  On 2-rainbow domination in generalized Petersen graphs , 2017, Int. J. Comput. Math. Comput. Syst. Theory.

[3]  M. Watkins,et al.  A theorem on tait colorings with an application to the generalized Petersen graphs , 1969 .

[4]  Tadeja Kraner Sumenjak,et al.  On the 2-rainbow domination in graphs , 2007, Discret. Appl. Math..

[5]  Chung-Shou Liao Power domination with bounded time constraints , 2016, J. Comb. Optim..

[6]  H. Coxeter Self-dual configurations and regular graphs , 1950 .

[7]  Xueliang Li,et al.  Rainbow Connection in 3-Connected Graphs , 2013, Graphs Comb..

[8]  Michael A. Henning,et al.  Domination in Graphs Applied to Electric Power Networks , 2002, SIAM J. Discret. Math..

[9]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[10]  Seyed Mahmoud Sheikholeslami,et al.  The k-rainbow domatic number of a graph , 2012, Discuss. Math. Graph Theory.

[11]  Maciej Zwierzchowski,et al.  2-Rainbow domination number of Cartesian products: $$C_{n}\square C_{3}$$ and $$C_{n}\square C_{5}$$ , 2014, J. Comb. Optim..

[12]  Michael A. Henning,et al.  RAINBOW DOMINATION IN GRAPHS , 2008 .

[13]  Kuo-Hua Wu,et al.  A tight upper bound for 2-rainbow domination in generalized Petersen graphs , 2013, Discret. Appl. Math..

[14]  Hua-ming Xing,et al.  Note on 2-rainbow domination and Roman domination in graphs , 2010, Appl. Math. Lett..

[15]  Yuansheng Yang,et al.  2-rainbow domination of generalized Petersen graphs P(n, 2) , 2009, Discret. Appl. Math..

[16]  Teresa W. Haynes,et al.  Bounds on weak roman and 2-rainbow domination numbers , 2014, Discret. Appl. Math..

[17]  Maciej Zwierzchowski,et al.  2-Rainbow domination number of Cn x C5 , 2014, Discret. Appl. Math..

[18]  Chao Wang,et al.  $$k$$k-Power domination in block graphs , 2016, J. Comb. Optim..

[19]  Polona Pavlic,et al.  On rainbow domination numbers of graphs , 2014, Inf. Sci..

[20]  Guangjun Xu 2-rainbow domination in generalized Petersen graphs P(n, 3) , 2009, Discret. Appl. Math..

[21]  Michitaka Furuya A note on total domination and 2-rainbow domination in graphs , 2015, Discret. Appl. Math..

[22]  Nader Jafari Rad,et al.  Bounds on the 2-Rainbow Domination Number of Graphs , 2013, Graphs Comb..

[23]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.