The metamathematics of Fraïssé's order type conjecture

A well ordering has the property that any non-empty subset has a minimum element. In [Girard (i) ATR0 proves that the collection S n of countable scattered linear orderings at level n of the Hausdorff hierarchy is better quasi ordered (bqo), and (ii) ATR0 proves that "if α is an ordinal and Q is bqo then Q α is bqo".

[1]  Richard Laver,et al.  On Fraisse's order type conjecture , 1971 .

[2]  F. Hausdorff,et al.  Grundzüge einer Theorie der geordneten Mengen , 1908 .

[3]  Peter Clote,et al.  Optimal bounds for ordinal comparison maps , 1985, Arch. Math. Log..

[4]  Stephen G. Simpson,et al.  Ordinal numbers and the Hilbert basis theorem , 1988, Journal of Symbolic Logic.

[5]  C. St. J. A. Nash-Williams,et al.  On well-quasi-ordering transfinite sequences , 1965, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  Stephen G. Simpson,et al.  Friedman's Research on Subsystems of Second Order Arithmetic* , 1985 .

[7]  H. Friedman,et al.  Harvey Friedman's Research on the Foundations of Mathematics , 1985 .

[8]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[9]  M. Pouzet,et al.  Sur les prémeilleurordres , 1972 .

[10]  J. Girard Proof Theory and Logical Complexity , 1989 .

[11]  Peter Clote,et al.  A recursion theoretic analysis of the clopen Ramsey theorem , 1984, Journal of Symbolic Logic.

[12]  C. St. J. A. Nash-Williams,et al.  On better-quasi-ordering transfinite sequences , 1968, Mathematical Proceedings of the Cambridge Philosophical Society.

[13]  Stephen G. Simpson,et al.  Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen , 1985, Arch. Math. Log..

[14]  Joseph B. Kruskal,et al.  The Theory of Well-Quasi-Ordering: A Frequently Discovered Concept , 1972, J. Comb. Theory A.

[15]  Stephen G. Simpson,et al.  A Finite Combinatorial Principle Which is Equivalent to the 1-Consistency of Predicative Analysis , 1982 .