Strain rate sensitivity of binary Mg-Gd and Mg-Y solid solutions

[1]  B. Diak,et al.  Advanced method for structure-strength-ductility assessment of dispersion-strengthened FCC metals using activation work, mean slip distance and constitutive relation analyses: Decoding the Haasen plot , 2021, Materials Science and Engineering: A.

[2]  T. Langdon,et al.  Deformation mechanisms in ultrafine-grained metals with an emphasis on the Hall–Petch relationship and strain rate sensitivity , 2021 .

[3]  William G. Feather,et al.  A crystal plasticity finite element model embedding strain-rate sensitivities inherent to deformation mechanisms: Application to alloy AZ31 , 2021 .

[4]  S. Agnew,et al.  Exploring stress equivalence for solid solution strengthened Mg alloy polycrystals , 2021 .

[5]  C. Boehlert,et al.  Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg–Y sheets , 2021 .

[6]  Ji-Woon Lee,et al.  Effects of high Mg content and processing parameters on Portevin-Le Chatelier and negative strain rate sensitivity effects in Al–Mg alloys , 2020 .

[7]  C. Boehlert,et al.  Eutectic phase strengthening and strain rate sensitivity behavior of AZ80 magnesium alloy , 2020 .

[8]  S. Saimoto Deformation kinetics and constitutive relation analyses of bifurcation in work-hardening of face-centred cubic metals at cryogenic temperatures , 2019, Acta Materialia.

[9]  R. Wu,et al.  Recent developments in high-strength Mg-RE-based alloys: Focusing on Mg-Gd and Mg-Y systems , 2018, Journal of Magnesium and Alloys.

[10]  H. Somekawa,et al.  Effect of alloying elements on room temperature stretch formability in Mg alloys , 2018, Materials Science and Engineering: A.

[11]  Ying-hong Peng,et al.  Strain rate sensitivities of deformation mechanisms in magnesium alloys , 2018 .

[12]  M. Niewczas,et al.  Flow stress and electrical resistivity in plastically deformed Al subjected to intermittent annealing , 2017 .

[13]  T. Gnäupel-Herold,et al.  Anisotropy, tension-compression asymmetry and texture evolution of a rare-earth-containing magnesium alloy sheet, ZEK100, at different strain rates and temperatures: Experiments and modeling , 2017 .

[14]  M. Easton,et al.  Strain-rate sensitivity of die-cast magnesium-aluminium based alloys , 2017 .

[15]  R. Mishra,et al.  Flow stress and work hardening of Mg-Y alloys , 2017 .

[16]  W. Curtin,et al.  Solute strengthening at high temperatures , 2016 .

[17]  M. Niewczas,et al.  Plasticity of Mg–Gd alloys between 4 K and 298 K , 2016 .

[18]  Akhtar S. Khan,et al.  Visco-plastic modeling of mechanical responses and texture evolution in extruded AZ31 magnesium alloy for various loading conditions , 2015 .

[19]  T. Tsuru,et al.  Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective , 2015, Scientific Reports.

[20]  R. Mishra,et al.  Flow stress and work-hardening behaviour of Al–Mg binary alloys , 2015 .

[21]  R. Mishra,et al.  Thermally activated flow of dislocations in Al–Mg binary alloys , 2015 .

[22]  M. Bugnet,et al.  Segregation and clustering of solutes at grain boundaries in Mg–rare earth solid solutions , 2014 .

[23]  C. S. Yang,et al.  The Portevin–Le Chatelier effect in β-phase Mg–14.3Li–0.8Zn alloy , 2014 .

[24]  W. Xiao,et al.  Serration Flow Behavior with Abnormal Strain Rate Sensitivity of Fine-Grained Mg-0.8 Wt Pct Ca Alloy , 2013, Metallurgical and Materials Transactions A.

[25]  D. Raabe,et al.  Basal and non-basal dislocation slip in Mg–Y , 2013 .

[26]  A. Zarei‐Hanzaki,et al.  Instantaneous strain rate sensitivity of wrought AZ31 magnesium alloy , 2013 .

[27]  D. Raabe,et al.  Ab initio and atomistic study of generalized stacking fault energies in Mg and Mg–Y alloys , 2013 .

[28]  T. Tsuru,et al.  Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[29]  S. J. Horstemeyer,et al.  Anomalous Strain Rate Sensitivity of {101¯2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \{ 10\overline{1}2\} $$\e , 2013, Metallurgical and Materials Transactions. A.

[30]  K. P. Boyle,et al.  Alloy solid solution strengthening of Mg alloys: Valence effect , 2012 .

[31]  Ali A. Roostaei,et al.  The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects , 2012 .

[32]  D. Raabe,et al.  The relation between ductility and stacking fault energies in Mg and Mg–Y alloys , 2012 .

[33]  E. Han,et al.  Serrated flow and tensile properties of a Mg-Gd-Zn alloy , 2012 .

[34]  Y. H. Zhao,et al.  Strain-rate sensitivity of textured Mg–3.0Al–1.0Zn alloy (AZ31) under impact deformation , 2011 .

[35]  J. Jonas,et al.  Effect of dynamic strain aging on the appearance of the rare earth texture component in magnesium alloys , 2011 .

[36]  C. Davies,et al.  Twinning-induced negative strain rate sensitivity in wrought Mg alloy AZ31 , 2011 .

[37]  Z. Cao,et al.  The twin mechanism of Portevin Le Chatelier in Mg–5Li–3Al–1.5Zn–2RE alloy , 2011 .

[38]  A. Pandey,et al.  Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures , 2011 .

[39]  M. Niewczas,et al.  Work-hardening behaviour of Mg single crystals oriented for basal slip , 2011 .

[40]  S. Zaefferer,et al.  On the role of non-basal deformation mechanisms for the ductility of Mg and Mg–Y alloys , 2011 .

[41]  M. Barnett,et al.  The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys , 2010 .

[42]  A. Chokshi,et al.  Strain-rate sensitivity and microstructural evolution in a Mg―Al―Zn alloy , 2010 .

[43]  K. Kainer,et al.  Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets , 2010 .

[44]  Engineering,et al.  First-principles data for solid-solution strengthening of magnesium: From geometry and chemistry to properties , 2010, 1007.2585.

[45]  S. Ringer,et al.  Effect of Al and Gd Solutes on the Strain Rate Sensitivity of Magnesium Alloys , 2010 .

[46]  K. P. Boyle,et al.  Elastic Properties, Thermal Expansion Coefficients, and Electronic Structures of Mg and Mg-Based Alloys , 2009 .

[47]  R. Mishra,et al.  Microstructural evolution and grain boundary sliding in a superplastic magnesium AZ31 alloy , 2009 .

[48]  E. Han,et al.  Effects of rare-earth elements Gd and Y on the solid solution strengthening of Mg alloys , 2009 .

[49]  H. Larsen,et al.  Kinetic analysis of dynamic point defect pinning in aluminium initiated by strain rate changes , 2009 .

[50]  E. Han,et al.  Solid solution strengthening behaviors in binary Mg-Y single phase alloys , 2009 .

[51]  Mark Easton,et al.  Compressive strain-rate sensitivity of magnesium-aluminum die casting alloys , 2009 .

[52]  S. Miura,et al.  Effect of Rare-Earth Elements Y and Dy on the Deformation Behavior of Mg Alloy Single Crystals , 2008 .

[53]  D. Wilkinson,et al.  The Portevin-Le Chatelier (PLC) effect and shear band formation in an AA5754 alloy , 2007 .

[54]  C. Davies The Effect of Twinning on Strain Rate Sensitivity during the Compression of Extruded Magnesium Alloy AZ31 , 2007 .

[55]  O. Ruano,et al.  Influence of the grain size on the strain rate sensitivity in an Mg–Al–Zn alloy at moderate temperatures , 2006 .

[56]  Cong Wang,et al.  Serrated flow and abnormal strain rate sensitivity of a magnesium-lithium alloy , 2006 .

[57]  S. Saimoto Dynamic dislocation–defect analysis , 2006 .

[58]  S. Agnew,et al.  Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B , 2005 .

[59]  Frédéric Barlat,et al.  Strain rate sensitivity of the commercial aluminum alloy AA5182-O , 2005 .

[60]  J. Nie,et al.  Serrated flow and tensile properties of a Mg–Y–Nd alloy , 2004 .

[61]  M. Mabuchi,et al.  Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates , 2003 .

[62]  M. Zaiser Dislocation motion in a random solid solution , 2002 .

[63]  L. M. Brown A dipole model for the cross-slip of screw dislocations in fcc metals , 2002 .

[64]  M. Niewczas,et al.  Transmission electron microscopy observations of debris structure in deformed copper single crystals , 2002 .

[65]  B. Diak,et al.  Characterization of thermodynamic response by materials testing , 1998 .

[66]  W. Bochniak Mode of deformation and the Cottrell-Stokes law in f. c. c. single crystals , 1995 .

[67]  F. Nabarro Cottrell-stokes law and activation theory , 1990 .

[68]  R. Labusch Cooperative effects in alloy hardening , 1988 .

[69]  S. Saimoto,et al.  A re-examination of the cottrell-stokes relation based on precision measurements of the activation volume , 1983 .

[70]  U. F. Kocks,et al.  New observations on the mechanisms of dynamic strain aging and of jerky flow , 1979 .

[71]  R. Mulford Analysis of strengthening mechanisms in alloys by means of thermal-activation theory☆ , 1979 .

[72]  M. Duesbery,et al.  Transients in steady-state plastic deformation produced by changes of strain rate , 1977 .

[73]  U. F. Kocks Thermodynamics and kinetics of slip , 1975 .

[74]  Z. S. Basinski Forest hardening in face centred cubic metals , 1974 .

[75]  F. Nabarro The statistical problem of hardening , 1972 .

[76]  P. Haasen Plastic deformation of nickel single crystals at low temperatures , 1958 .

[77]  A. Cottrell,et al.  Effects of temperature on the plastic properties of aluminium crystals , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[78]  Frank Reginald Nunes Nabarro,et al.  Mathematical theory of stationary dislocations , 1952 .