Poisson flats in Euclidean spaces Part II: Homogeneous Poisson flats and the complementary theorem

Part I [21] treated the case of a finite number of independent random uniform s-flats in an 'admissible' subset of Ed (s = 0, ,d 1). In this second part, the natural and fruitful 'Poisson extension' to a 'countable number of independent random uniform s-flats in Ed itself' is considered. It is worth mentioning at the outset that to have read Part I is not a prerequisite for reading the present paper. Although results of that part are often applied here, they serve only in an auxiliary capacity, thereby allowing the main thread of the theory to be developed without interruption.

[1]  S. Goudsmit,et al.  Random Distribution of Lines in a Plane , 1945 .

[2]  F. Haight Handbook of the Poisson Distribution , 1967 .

[3]  N. Wiener The ergodic theorem , 1939 .

[4]  Czesaw Ryll-Nardzewski,et al.  Remarks on Processes of Calls , 1961 .

[5]  J. Kingman,et al.  Completely random measures. , 1967 .

[6]  F. Streit On Multiple Integral Geometric Integrals and Their Applications to Probability Theory , 1970, Canadian Journal of Mathematics.

[7]  M. S. Bartlett,et al.  An introduction to stochastic processes, with special reference to methods and applications , 1955 .

[8]  R. E. Miles RANDOM POLYGONS DETERMINED BY RANDOM LINES IN A PLANE, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Jay R. Goldman,et al.  Stochastic Point Processes: Limit Theorems , 1967 .

[10]  J. Goldman Infinitely divisible point processes in Rn , 1967 .

[11]  L. Nachbin,et al.  The Haar integral , 1965 .

[12]  R. E. Miles Poisson flats in Euclidean spaces Part I: A finite number of random uniform flats , 1969, Advances in Applied Probability.

[13]  R. E. Miles Probability Distribution of a Network of Triangles (Mary Beth Stearns) , 1969 .

[14]  H. Hadwiger Vorlesungen über Inhalt, Oberfläche und Isoperimetrie , 1957 .

[15]  J. Neyman,et al.  Statistical Approach to Problems of Cosmology , 1958 .

[16]  A. James Normal Multivariate Analysis and the Orthogonal Group , 1954 .

[17]  O. Varga Integralgeometrie 3. Croftons Formeln für den Raum , 1936 .

[18]  M. Stearns Probability Distribution of a Network of Triangles , 1967 .

[19]  J. Doob Stochastic processes , 1953 .

[20]  A. G. Ogston,et al.  The spaces in a uniform random suspension of fibres , 1958 .

[21]  über Treffzahlwahrscheinlichkeiten im Eikörperfeld , 1968 .

[22]  R. E. Miles On the homogeneous planar Poisson point process , 1970 .

[23]  J. E. Moyal The general theory of stochastic population processes , 1962 .

[24]  R. E. Miles The asymptotic values of certain coverage probabilities , 1969 .

[25]  A. Rényi Remarks on the Poisson process , 1967 .

[26]  M. S. Bartlett The Spectral Analysis of Line Processes , 1967 .

[27]  Michel Loève,et al.  Probability Theory I , 1977 .

[28]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .