Reaction-diffusion equations for population dynamics with forced speed I - The case of the whole space
暂无分享,去创建一个
[1] Henri Berestycki,et al. Liouville-type results for semilinear elliptic equations in unbounded domains , 2007 .
[2] F. M. Arscott,et al. PERIODIC‐PARABOLIC BOUNDARY VALUE PROBLEMS AND POSITIVITY , 1992 .
[3] H. Weinberger,et al. Maximum principles in differential equations , 1967 .
[4] Grégoire Nadin. The principal eigenvalue of a space–time periodic parabolic operator , 2009 .
[5] H. Berestycki,et al. Some applications of the method of super and subsolutions , 1980 .
[6] Luca Rossi,et al. On the principal eigenvalue of elliptic operators in $\R^N$ and applications , 2006 .
[7] G. M. Lieberman. SECOND ORDER PARABOLIC DIFFERENTIAL EQUATIONS , 1996 .
[8] O. Diekmann,et al. UvA-DARE ( Digital Academic Repository ) Can a species keep pace with a shifting climate ? , 2009 .
[9] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[10] H. Berestycki,et al. Reaction-diffusionequations for population dynamics with forced speed II -cylindrical-type domains , 2009 .
[11] O. Ladyženskaja. Linear and Quasilinear Equations of Parabolic Type , 1968 .
[12] S. Varadhan,et al. The principal eigenvalue and maximum principle for second‐order elliptic operators in general domains , 1994 .
[13] E. N. Dancer. On the existence and uniqueness of positive solutions for competing species models with diffusion , 1991 .
[14] P. Hess,et al. Periodic-Parabolic Boundary Value Problems and Positivity , 1991 .
[15] M. Kreĭn,et al. Linear operators leaving invariant a cone in a Banach space , 1950 .