Commentationes Localized Bond Orbitals and the Correlation Problem I. The Perturbation Calculation of the Ground State Energy

A method is proposed to go beyond the SCF result in the calculation of the ground state energies without any variational procedure. One chooses a set of reasonable bonding and antibonding orbitals localized on the chemical bonds. The bonding orbitals are used to built a fully localized determinant. The basis of excited states is built using the antihonding orbitals. One calculates the lower eigenvalue of the CI matrix in this basis by a Rayleigh-Schr6dinger expansion. The conceptual and practical advantages of the method are discussed, and the perturbation series is specified in order to satisfy the linked cluster theorem conditions and to retain the advantages of the Epstein-Nesbet partition of the Hamiltonian. Es wird eine Methode angegeben, die die SCF-Resultate in der Berechnung der Grundzustandsenergien tibertrifft, ohne die Mittel der Variationsrechnung anzuwenden. Als Basisfunktionen w~hlt man einen Satz geeigneter bindender and antibindender Orbitale, die auf den chemischen Bindungen lokalisiert sind. Die bindenden Orbitale werden zum Aufbau einer v611ig lokalisierten Determinante benutzt. Als Basisfunktionen ftir die angeregten Zust[inde benutzt man auch antibindende Orbitale. Man berechnet den tieferen Eigenwert der CI Matrix mit dieser Basis durch eine Rayleigh-Schr6dingerEntwicklung. Die begriffiichen und praktischen Vorteile dieser Methode werden diskutiert. Indem man die St~Srungsreihe so w~ihlt, dab das "linked cluster"-Theorem erftillt ist, bleiben die Vorteile der Epstein-Nesbet-Aufspaltung des Hamiltonoperators erhalten.

[1]  K. Pitzer,et al.  Electronic Correlation in Molecules. III. The Paraffin Hydrocarbons1 , 1956 .

[2]  Giuseppe Del Re,et al.  812. A simple MO–LCAO method for the calculation of charge distributions in saturated organic molecules , 1958 .

[3]  E. Steiner Theory of Correlated Wavefunctions. III. Alternative Initial Approximations , 1967 .

[4]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[5]  P. S. Epstein,et al.  The Stark effect from the point of view of Schroedinger's quantum theory , 1926 .

[6]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[7]  K. Ohno,et al.  ``Bond‐Orbital'' and ``Modified Electron‐Pair'' Calculations on the Ammonia Molecule , 1963 .

[8]  R. Brown 533. A quantum-mechanical treatment of aliphatic compounds. Part I. Paraffins , 1953 .

[9]  R. E. Watson APPROXIMATE WAVE FUNCTIONS FOR ATOMIC Be , 1960 .

[10]  Kazuo Ito On the Heats of Formation and Potential Barriers for the Internal Rotation in Hydrocarbon Molecules , 1953 .

[11]  O. Sǐnanoğlu SOME ASPECTS OF THE QUANTUM THEORY OF ATOMS, MOLECULES, AND THEIR INTERACTIONS , 1962 .

[12]  P. Claverie,et al.  The use of perturbation methods for the study of the effects of configuration interaction , 1967 .

[13]  O. Sǐnanoğlu Bonds and Intramolecular Forces , 1962 .

[14]  H. Hamano A Semi-empirical MO Theory of σ Electron Systems. I. General Theory , 1964 .

[15]  N. M. Hugenholtz Perturbation theory of large quantum systems , 1957 .

[16]  C. Bender NATURAL ORBITAL BASED ENERGY CALCULATION FOR HELIUM HYDRIDE AND LITHIUM HYDRIDE , 1966 .

[17]  A. Messiah Quantum Mechanics , 1961 .

[18]  W. Kutzelnigg,et al.  Die horizontale Korrelation in π-Elektronensystemen und ihre Beschreibung durch Elektronenpaarfunktionen , 1967 .

[19]  J. Pople,et al.  The molecular orbital theory of chemical valency. IV. The significance of equivalent orbitals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[20]  A. Perico,et al.  Uniform Localization of Atomic and Molecular Orbitals. II , 1967 .

[21]  R. Mcweeny,et al.  Criteria for bond orbitals and optimum hybrids , 1968 .

[22]  G. G. Hall,et al.  The molecular orbital theory of chemical valency. III. Properties of molecular orbitals , 1950, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[23]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals , 1963 .

[24]  John R. Platt,et al.  Influence of Neighbor Bonds on Additive Bond Properties in Paraffins , 1947 .

[25]  R. Nesbet Excited electronic states of 1, 3-butadiene , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  P. Claverie,et al.  The Use of Perturbation Methods for the Study of the Effects of Configuration Interaction: I. Choice of the Zeroth-Order Hamiltonian , 1967 .

[27]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  J. Tillieu,et al.  Sur le calcul des nergies perturbes d'ordre quelconque , 1960 .

[29]  Jeffrey Goldstone,et al.  Derivation of the Brueckner many-body theory , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[30]  École d'été de physique théorique,et al.  The many body problem = Le problème à N corps : Université de Grenoble cours donnés à l'Ecole d'été de physique théorique, Les Houches, session 1958 , 1959 .

[31]  Joseph G. Hoffman,et al.  Quantum Theory of Atoms, Molecules and the Solid State: A Tribute to John C. Slater , 1967 .

[32]  Werner Kutzelnigg,et al.  Direct Calculation of Approximate Natural Orbitals and Natural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. II. Decoupling of the Pair Equations and Calculation of the Pair Correlation Energies for the Be and LiH Ground States , 1968 .

[33]  R. Feynman The Theory of Positrons , 1949 .

[34]  R. Levine,et al.  On a Theory of Absolute Reaction Rates , 1967 .

[35]  R. Mcweeny,et al.  A quantum-mechanical study of the water molecule , 1960, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  G. G. Hall The molecular orbital theory of chemical valency VIII. A method of calculating ionization potentials , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[37]  L. Bartell On the Effects of Intramolecular van der Waals Forces , 1960 .

[38]  M. Dewar,et al.  The calculation of bond orders, resonance energies, and orbital energies by a simple perturbation method , 1954 .

[39]  H. Hartmann,et al.  Quantenmechanische Zweizentren-Coulomb-Modelle für Acetylen, Äthylen und Äthan , 1968 .