Positons, negatons and complexitons of the mKdV equation with non-uniformity terms

Abstract The N-soliton solution of the mKdV equation with non-uniformity terms is obtained through Hirota method and Wronskian technique. We can also derive its positons, negatons and complexitons by a matrix extension of the Wronskian formulation.

[1]  Deng-yuan Chen,et al.  Negatons, positons, rational-like solutions and conservation laws of the Korteweg?de Vries equation with loss and non-uniformity terms , 2004 .

[2]  Wen-Xiu Ma,et al.  Wronskian solutions of the Boussinesq equation—solitons, negatons, positons and complexitons , 2007 .

[3]  Wenxiu Ma,et al.  Complexiton solutions to integrable equations , 2005, nlin/0502035.

[4]  Wen-Xiu Ma,et al.  Soliton, Positon and Negaton Solutions to a Schrödinger Self-consistent Source Equation , 2003 .

[5]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[6]  Wenxiu Ma Wronskians, generalized Wronskians and solutions to the Korteweg–de Vries equation , 2003, nlin/0303068.

[7]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[8]  Junkichi Satsuma,et al.  A Wronskian Representation of N-Soliton Solutions of Nonlinear Evolution Equations , 1979 .

[9]  J-Y Ge,et al.  Extended Wronskian formula for solutions to the Korteweg-deVries equation , 2008 .

[10]  S. Sirianunpiboon,et al.  A note on the wronskian form of solutions of the KdV equation , 1988 .

[11]  J. Nimmo,et al.  A method of obtaining the N-soliton solution of the Boussinesq equation in terms of a wronskian , 1983 .

[12]  J. Nimmo,et al.  Rational solutions of the Korteweg-de Vries equation in wronskian form , 1983 .

[13]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[14]  Wen-Xiu Ma,et al.  Complexiton solutions of the Toda lattice equation , 2004 .

[15]  Wen-Xiu Ma,et al.  Complexiton solutions to the Korteweg–de Vries equation , 2002 .

[16]  Da-jun Zhang,et al.  The n-soliton solutions for the modified KdV equation with self-consistent sources , 2002 .