Stereoscopic 3D exploration of freeform architecture

Abstract As freeform architecture becomes popular, the observation method for complex geometries is also becoming important. In particular, stereoscopic 3D is one of the most useful approaches to explore 3D space realistically with extrusion and depth feelings. In this work, we propose a stereoscopic 3D exploration to observe an internal space structure of freeform architecture effectively. For a visually comfortable stereoscopic 3D navigation, we analyze causes of visual discomfort and control perceived depth by adjusting virtual camera separation and virtual screen depth in a stereo scene. Since a user notices rapid changes of a scene, we measure JND (Just Noticeable Difference) for the optimal changes of virtual camera separation and virtual screen depth. For the camera movement in complex and curved pathways, we use automated navigation utilizing cubic Bezier curves. During the navigation, the camera parameters are controlled automatically in order to produce visually comfortable stereoscopic 3D scenes. We also performed a user study to verify the effectiveness of the proposed explorations using famous freeform architectural models such as the Guggenheim Museum and the Jubilee Church.

[1]  Igor Mordatch,et al.  Multiscale 3D navigation , 2009, I3D '09.

[2]  David M. Hoffman,et al.  The zone of comfort: Predicting visual discomfort with stereo displays. , 2011, Journal of vision.

[3]  Hans-Peter Seidel,et al.  A perceptual model for disparity , 2011, SIGGRAPH 2011.

[4]  Massimo Majowiecki The Free Form Design (FFD) in steel structural architecture – aesthetic values and reliability , 2008 .

[5]  Selim Balcisoy,et al.  Automatic path generation for terrain navigation , 2012, Comput. Graph..

[6]  Peter Kauff,et al.  Three-Dimensional Video Postproduction and Processing , 2011, Proceedings of the IEEE.

[7]  Jock D. Mackinlay,et al.  Rapid controlled movement through a virtual 3D workspace , 1990, SIGGRAPH.

[8]  Peter Kauff,et al.  Production Rules for Stereo Acquisition , 2011, Proceedings of the IEEE.

[9]  Filippo Speranza,et al.  Stereoscopic 3D-TV: Visual Comfort , 2011, IEEE Transactions on Broadcasting.

[10]  Serguei A. Mokhov,et al.  A stereoscopic OpenGL-based interactive plug-in framework for Maya and beyond , 2009, VRCAI '09.

[11]  John P. Frisby,et al.  Seeing : the computational approach to biological vision , 2010 .

[13]  Tien-Tsin Wong,et al.  Binocular tone mapping , 2012, ACM Trans. Graph..

[14]  George W. Fitzmaurice,et al.  ShowMotion: camera motion based 3D design review , 2006, I3D '06.

[15]  Hans-Peter Seidel,et al.  Highlight microdisparity for improved gloss depiction , 2012, ACM Trans. Graph..

[16]  Mtm Marc Lambooij,et al.  Visual Discomfort and Visual Fatigue of Stereoscopic Displays: A Review , 2009 .

[17]  Patrick Olivier,et al.  Camera Control in Computer Graphics , 2008, Comput. Graph. Forum.

[18]  Nassir Navab,et al.  The effect of out-of-focus blur on visual discomfort when using stereo displays , 2010, 2010 IEEE International Symposium on Mixed and Augmented Reality.

[19]  Hans-Peter Seidel,et al.  Adaptive Image-space Stereo View Synthesis , 2010, VMV.

[20]  Tuba Kocaturk,et al.  Virtual futures for design, construction & procurement , 2008 .

[21]  David M. Hoffman,et al.  Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. , 2008, Journal of vision.

[22]  George W. Fitzmaurice,et al.  Safe 3D navigation , 2008, I3D '08.

[23]  T. Kvan,et al.  New Heritage: New Media and Cultural Heritage , 2007 .

[24]  Markus H. Gross,et al.  OSCAM - optimized stereoscopic camera control for interactive 3D , 2011, ACM Trans. Graph..

[25]  K. Fujii,et al.  Visualization for the analysis of fluid motion , 2005, J. Vis..

[26]  Aljoscha Smolic,et al.  Nonlinear disparity mapping for stereoscopic 3D , 2010, SIGGRAPH 2010.