Advanced Control of a Rotary Dryer

Abstract Two kinds of intelligent, hybrid control systems for a rotary dryer are presented. The main controlled variable is the output moisture of solids and the main manipulated variable is the input temperature of drying air which correlates to the fuel flow. The main disturbances of the process are the input moisture of solids and the feed flow. The one discussed control system includes a fuzzy logic controller (FLC) and a PI-controller and the other a neural network controller and a PI-controller. In both cases the intelligent controller determines the set point value to a PI controller. The control results have been examined both with simulations and with pilot plant experiments.

[1]  Kauko Leiviskä,et al.  Simulation of a Rotary Dryer with Multimedia , 1995, EUROSIM.

[2]  J. W. Robinson,et al.  Improve dryer control , 1992 .

[3]  William L. Luyben,et al.  Chemical Process Analysis: Mass and Energy Balances , 1988 .

[4]  MengChu Zhou,et al.  Design and Implementation of Fuzzy Logic Controllers for a Heat Exchanger in a Water-for-Injection System , 1995, J. Intell. Fuzzy Syst..

[5]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[6]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[7]  John J. McKetta,et al.  Encyclopedia of Chemical Processing and Design , 1976 .

[8]  N. E. Gough,et al.  Computer Control of a Pilot Scale Rotary Solids Drier , 1971 .

[9]  J. Koskinen,et al.  Fuzzy modelling of a pilot plant rotary dryer , 1998 .

[10]  Tadeusz Kudra,et al.  Drying: Principles, Applications and Design , 1987 .

[11]  John Howard Perry,et al.  Chemical Engineers' Handbook , 1934 .

[12]  F. C. Harbert Automatic control of drying processes moisture measurement and control by the temperature difference method , 1974 .

[13]  J. Thibault,et al.  Modeling of the Solids Transportation within an Industrial Rotary Dryer: A Simple Model , 1996 .

[14]  Peter L. Douglas,et al.  SIMULATION OF A ROTARY DRYER FOR SUGAR CRYSTALLINE , 1993 .

[15]  Peter J. Gawthrop,et al.  Neural networks for control systems - A survey , 1992, Autom..

[16]  Kaddour Najim,et al.  Modelling and learning control of rotary phosphate dryer , 1989 .

[17]  B. E. Platin,et al.  Modelling and design of rotary dryers , 1982 .

[18]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[19]  W. Mann Digital control of a rotary dryer in the sugar industry , 1983, Autom..

[20]  N. V. Bhat,et al.  Use of neural nets for dynamic modeling and control of chemical process systems , 1990 .

[21]  N.V. Bhat,et al.  Modeling chemical process systems via neural computation , 1990, IEEE Control Systems Magazine.

[22]  John F. Pietranski,et al.  Expert Fuzzy Process Control of a Rotary Dryer , 1987, 1987 American Control Conference.

[23]  J. Garside,et al.  The drying of granular fertilizers , 1970 .

[24]  Roland Wimmerstedt,et al.  Drying of porous granular materials , 1983 .

[25]  Ian T. Cameron,et al.  A DISTRIBUTED PARAMETER APPROACH TO THE DYNAMICS OF ROTARY DRYING PROCESSES , 1993 .

[26]  Dr. Hans Hellendoorn,et al.  An Introduction to Fuzzy Control , 1996, Springer Berlin Heidelberg.

[27]  Sigeru Omatu,et al.  Process control by on-line trained neural controllers , 1992, IEEE Trans. Ind. Electron..