Last Glacial Maximum giant sand dunes on the island of Vis, Croatia

[1]  G. Durn,et al.  Luminescence dating and palaeomagnetic age constraint of a last glacial loess-palaeosol sequence from Istria, Croatia , 2018, Quaternary International.

[2]  L. Gómez‐Pujol,et al.  Late Pleistocene dune-sourced alluvial fans in coastal settings: Sedimentary facies and related processes (Mallorca, Western Mediterranean) , 2018 .

[3]  L. Wacha,et al.  Pleistocene alluvial and aeolian deposits with tephra on the island of Lopud (eastern mid-Adriatic, Croatia): Provenance, wind regime, and climate controls , 2017, Quaternary International.

[4]  G. Durn,et al.  Provenance and formation of the red palaeosol and lithified terra rossa-like infillings on the Island of Susak: A high-resolution and chronological approach , 2017, Quaternary International.

[5]  M. Frechen,et al.  The Last Glacial aeolian record of the Island of Susak (Croatia) as seen from a high-resolution grain–size and rock magnetic analysis , 2017, Quaternary International.

[6]  T. Marjanac,et al.  The extent of middle Pleistocene ice cap in the coastal Dinaric Mountains of Croatia , 2016, Quaternary Research.

[7]  S. Tsukamoto,et al.  The chronostratigraphy of the latest Middle Pleistocene aeolian and alluvial activity on the Island of Hvar, eastern Adriatic, Croatia , 2016 .

[8]  K. Pikelj,et al.  Surface sediment around the Jabuka Islet and the Jabuka Shoal: Evidence of Miocene tectonics in the Central Adriatic Sea , 2015 .

[9]  M. Juračić,et al.  Tectonic constraints on the late Pleistocene-Holocene relative sea-level change along the north-eastern Adriatic coast (Croatia) , 2014 .

[10]  O. Mandic,et al.  Topography controlling the wind regime on the karstic coast: late Pleistocene coastal calcareous sands of eastern mid-Adriatic, Croatia , 2014, Facies.

[11]  I. Vilibić,et al.  Paleo-coastline of the Central Eastern Adriatic Sea, and Paleo-Channels of the Cetina and Neretva rivers during the last glacial maximum , 2014 .

[12]  V. Pascucci,et al.  Middle Pleistocene to Holocene coastal evolution of NW Sardinia (Mediterranean Sea, Italy) , 2014 .

[13]  Borna Lužar-Oberiter,et al.  Preservation of hanging aeolian deposits in insular karst depressions: Sediment sources and implications for the Pleistocene palaeogeography of the SE Adriatic archipelago , 2013 .

[14]  Van,et al.  SUCCESSION OF PLEISTOCENE NON-MARINE SEDIMENTS CONTAINING MARINE FOSSILS , MLJET ISLAND , EASTERN ADRIATIC ( CROATIA ) , 2013 .

[15]  D. Alderton,et al.  A detrital heavy mineral viewpoint on sediment provenance and tropical weathering in SE Asia , 2012 .

[16]  C. Ritz,et al.  Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes , 2011 .

[17]  L. Wacha,et al.  Pleistocene calcareous aeolian-alluvial deposition in a steep relief karstic coastal belt (island of Hvar, eastern Adriatic, Croatia) , 2011 .

[18]  M. Frechen,et al.  The Loess Chronology of the Island of Susak, Croatia , 2011 .

[19]  S. Bacon,et al.  A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic , 2011 .

[20]  M. Frechen,et al.  Mineralogical and geochemical characteristics of Quaternary sediments from the Island of Susak (Northern Adriatic, Croatia) , 2011 .

[21]  Norbert Mercier,et al.  Dose-rate conversion factors: update , 2011 .

[22]  L. Clemmensen,et al.  Transgressive dune formation along a cliffed coast at 75 ka in Sardinia, Western Mediterranean: a record of sea‐level fall and increased windiness , 2010 .

[23]  P. Hughes,et al.  Pleistocene ice caps on the coastal mountains of the Adriatic Sea , 2010 .

[24]  M. Juračić,et al.  Late Pleistocene – Holocene environmental changes – records from submerged speleothems along the Eastern Adriatic coast (Croatia) , 2010 .

[25]  K. Thomsen,et al.  Review of optically stimulated luminescence (OSL) instrumental developments for retrospective dosimetry , 2010 .

[26]  A. Murray,et al.  Late Pleistocene carbonate aeolianites on Mallorca, Western Mediterranean: a luminescence chronology , 2009 .

[27]  T. Korbar Orogenic evolution of the External Dinarides in the NE Adriatic region: a model constrained by tectonostratigraphy of Upper Cretaceous to Paleogene carbonates , 2009 .

[28]  F. Calamita,et al.  Active intraplate deformation within Adria: Examples from the Adriatic region , 2009 .

[29]  A. Del Ben,et al.  Gas seeps linked to salt structures in the Central Adriatic Sea , 2008 .

[30]  L. Arnold,et al.  Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose , 2006 .

[31]  Y. S. Mayya,et al.  Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution , 2006 .

[32]  A. Wintle,et al.  Assessing the reproducibility and accuracy of optical dating of fluvial deposits , 2006 .

[33]  I. Velić,et al.  Evolution of the Adriatic Carbonate Platform: Palaeogeography, main events and depositional dynamics , 2005 .

[34]  L. Fifield,et al.  Optical Dating of Deep-Sea Sediments using Single Grains of Quartz: a Comparison with Radiocarbon , 2004 .

[35]  A. Murray,et al.  The single aliquot regenerative dose protocol: potential for improvements in reliability , 2003 .

[36]  C. Twidale,et al.  The onset of dune formation in the Strzelecki Desert, South Australia , 2003 .

[37]  K. Lambeck,et al.  Sea Level Change Through the Last Glacial Cycle , 2001, Science.

[38]  A. Murray,et al.  Luminescence dating of quartz using an improved single aliquot regenerative-dose protocol , 2000 .

[39]  G. Laslett,et al.  OPTICAL DATING OF SINGLE AND MULTIPLE GRAINS OF QUARTZ FROM JINMIUM ROCK SHELTER, NORTHERN AUSTRALIA: PART I, EXPERIMENTAL DESIGN AND STATISTICAL MODELS* , 1999 .

[40]  J. Prescott,et al.  Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations , 1994 .

[41]  Kenneth Pye,et al.  Aeolian sand and sand dunes , 1990 .

[42]  Paul F. Green,et al.  Estimating the component ages in a finite mixture , 1990 .