Reconfigurable Inductorless Wideband CMOS LNA for Wireless Communications

Future hyper-connected devices must support several communication standards, across various frequency bands, with a low-area, single-chip, radio frequency frontend. In this paper, we present a reconfigurable, inductorless, wideband, low-noise amplifier (LNA) for multistandard applications. This LNA is based on a complementary current-reuse common source amplifier, combined with a low-current active feedback. A gyrator-C effect is used to achieve wideband input matching. High linearity is obtained through complementary derivative superposition and active shunt feedback. Implemented in 130-nm CMOS technology, the prototype exhibits a -3 dB bandwidth of 2.2 GHz. In high linearity mode, the LNA achieves a minimum <inline-formula> <tex-math notation="LaTeX">$NF$ </tex-math></inline-formula> of 2 dB, a voltage gain of 21.1 dB and an <inline-formula> <tex-math notation="LaTeX">$IIP_{3}$ </tex-math></inline-formula> of +14.3 dBm, with 7 mW of power consumption. In low-power mode, it draws 1.5 mW, while providing a NF of 2.6 dB, a gain of 21 dB, and an <inline-formula> <tex-math notation="LaTeX">$IIP_{\mathrm {3}}$ </tex-math></inline-formula> of 4.7 dBm. The active die area is 0.0072 mm<sup>2</sup>.

[1]  Shen-Iuan Liu,et al.  Inductorless Wideband CMOS Low-Noise Amplifiers Using Noise-Canceling Technique , 2012, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Heng Zhang,et al.  Linearization Techniques for CMOS Low Noise Amplifiers: A Tutorial , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  J. Laskar,et al.  Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications , 2008, IEEE Transactions on Microwave Theory and Techniques.

[4]  F. Svelto,et al.  Toward multistandard mobile terminals - fully integrated receivers requirements and architectures , 2005, IEEE Transactions on Microwave Theory and Techniques.

[5]  Krzysztof Iniewski,et al.  Wireless Technologies: Circuits, Systems, and Devices , 2007 .

[6]  Vladimir Aparin,et al.  Analysis of IM Asymmetry in MOSFET Small-Signal Amplifiers , 2011 .

[7]  Joseph Mitola,et al.  The software radio architecture , 1995, IEEE Commun. Mag..

[8]  Peter R. Kinget,et al.  High-Frequency Distortion Analysis of Analog Integrated Circuits , 1999 .

[9]  Thomas H. Lee,et al.  The Design of CMOS Radio-Frequency Integrated Circuits: RF CIRCUITS THROUGH THE AGES , 2003 .

[10]  Edgar Sánchez-Sinencio,et al.  An Inductor-Less Noise-Cancelling Broadband Low Noise Amplifier With Composite Transistor Pair in 90 nm CMOS Technology , 2011, IEEE Journal of Solid-State Circuits.

[11]  Mohamed A. Y. Abdulla,et al.  Distortion Analysis in Analog Integrated Circuits , 2002 .

[12]  Yann Deval,et al.  The Experimental Demonstration of a SASP-Based Full Software Radio Receiver , 2010, IEEE Journal of Solid-State Circuits.

[13]  Li Zhang,et al.  A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[14]  A. Madanayake,et al.  Wideband LNA With an Active -C Element , 2012, IEEE Microwave and Wireless Components Letters.

[15]  Pierluigi Nuzzo,et al.  A 2-mm$^{2}$ 0.1–5 GHz Software-Defined Radio Receiver in 45-nm Digital CMOS , 2009, IEEE Journal of Solid-State Circuits.

[16]  L. Larson,et al.  Modified derivative superposition method for linearizing FET low-noise amplifiers , 2004, IEEE Transactions on Microwave Theory and Techniques.

[17]  Namsoo Kim,et al.  Analysis of $\hbox {IM}_{\rm 3}$ Asymmetry in MOSFET Small-Signal Amplifiers , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[18]  Peter R. Kinget,et al.  Field-Programmable LNAs With Interferer-Reflecting Loop for Input Linearity Enhancement , 2015, IEEE Journal of Solid-State Circuits.

[19]  François Belmas,et al.  A Low Power Inductorless LNA With Double Gm Enhancement in 130 nm CMOS , 2012, RFIC 2012.

[20]  P. Wambacq,et al.  Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS , 2008, IEEE Journal of Solid-State Circuits.

[21]  Tae Wook Kim,et al.  A 2.88 mW $+$ 9.06 dBm IIP3 Common-Gate LNA With Dual Cross-Coupled Capacitive Feedback , 2015, IEEE Transactions on Microwave Theory and Techniques.

[22]  Ali M. Niknejad,et al.  A Highly Linear Broadband CMOS LNA Employing Noise and Distortion Cancellation , 2007, IEEE Journal of Solid-State Circuits.

[23]  E. Sanchez-Sinencio,et al.  A 2.8-mW Sub-2-dB Noise-Figure Inductorless Wideband CMOS LNA Employing Multiple Feedback , 2011, IEEE Transactions on Microwave Theory and Techniques.

[24]  A. J. Payne,et al.  VHF CMOS integrated active inductor , 1996 .

[25]  Yves Rolain,et al.  A 0.5 mm$^{2}$ Power-Scalable 0.5–3.8-GHz CMOS DT-SDR Receiver With Second-Order RF Band-Pass Sampler , 2010, IEEE Journal of Solid-State Circuits.

[26]  Jean-Michel Fournier,et al.  A Low Power Inductorless LNA With Double ${\rm G} _{\rm m}$ Enhancement in 130 nm CMOS , 2012, IEEE Journal of Solid-State Circuits.

[27]  Y. Deval,et al.  A low voltage current reuse LNA in a 130nm CMOS technology for UWB applications , 2007, 2007 European Microwave Conference.

[28]  Hossein Hashemi,et al.  A 0.5-to-3 GHz Software-Defined Radio Receiver Using Discrete-Time RF Signal Processing , 2014, IEEE Journal of Solid-State Circuits.