Existence and stability of standing hole solutions to complex Ginzburg-Landau equations

We consider the existence and stability of the hole, or dark soliton, solution to a Ginzburg-Landau perturbation of the defocusing nonlinear Schrodinger equation (NLS), and to the nearly real complex Ginzburg-Landau equation (CGL). By using dynamical systems techniques, it is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation of that which exists for the NLS. When considering the stability of the soliton, a major difficulty which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e. an edge bifurcation may occur. Since the continuous spectrum for the NLS covers the imaginary axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave. An additional important consideration is that an edge bifurcation can happen even if there are no eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented by Kapitula and Sandstede (1998 Physica D 124 58-103) and Kapitula (1999 SIAM J. Math. Anal. 30 273-97), we use the Evans function to show that when the wave persists as a regular perturbation, at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed wave will be stable. For the NLS the results are an improvement and refinement of previous work, while the results for the CGL are new. The techniques presented are very general and are therefore applicable to a much larger class of problems than those considered here.

[1]  Philippe Marcq,et al.  Exact solutions of the one-dimensional quintic complex Ginzburg-Landau equation , 1993, patt-sol/9310004.

[2]  Orlando,et al.  Kink propagation in a highly discrete system: Observation of phase locking to linear waves. , 1995, Physical review letters.

[3]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[4]  Mark J. Ablowitz,et al.  Nonlinear differential−difference equations , 1975 .

[5]  On the nonlinear stability of plane waves for the ginzburg‐landau equation , 1994 .

[6]  Olaf Stiller,et al.  Hole solutions in the 1D complex Ginzburg-Landau equation , 1995 .

[7]  W. Eckhaus On modulation equations of the Ginzburg-Landau type , 1992 .

[8]  Bernold Fiedler,et al.  Discretization of homoclinic orbits, rapid forcing, and "invisible" chaos , 1996 .

[9]  I. Aranson,et al.  All we know about hole solutions in the CGLE , 1995 .

[10]  Bishop,et al.  Statistical mechanics of a nonlinear model for DNA denaturation. , 1989, Physical review letters.

[11]  Todd Kapitula,et al.  Stability criterion for bright solitary waves of the perturbed cubic-quintic Schro¨dinger equation , 1997, patt-sol/9701011.

[12]  Christopher Jones,et al.  Stability of the travelling wave solution of the FitzHugh-Nagumo system , 1984 .

[13]  Todd Kapitula,et al.  Existence and stability of singular heteroclinic orbits for the Ginzburg - Landau equation , 1996 .

[14]  P. Kevrekidis,et al.  Dynamics of lattice kinks , 2000, nlin/0003006.

[15]  S. Aubry,et al.  Existence and stability of quasiperiodic breathers in the discrete nonlinear Schrödinger equation , 1997 .

[16]  J. C. Ross,et al.  Multibreathers and homoclinic orbits in 1-dimensional nonlinear lattices , 2000 .

[17]  Robert Gardner Stability and Hopf bifurcation of steady state solutions of a singularly perturbed reaction-diffusion system , 1992 .

[18]  K. Knopp Theory of Functions , 1958 .

[19]  J. Shatah,et al.  Stability theory of solitary waves in the presence of symmetry, II☆ , 1990 .

[20]  H. Feshbach,et al.  Finite Difference Equations , 1959 .

[21]  Lederer,et al.  Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[23]  Xiang-jun Chen,et al.  A direct perturbation theory for dark solitons based on a complete set of the squared Jost solutions , 1998 .

[24]  Arjen Doelman,et al.  Slow time-periodic solutions of the Ginzburg-Landau equation , 1989 .

[25]  Kivshar,et al.  Dark solitons in discrete lattices. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  A. V. Harten,et al.  On the Justification of the Ginzburg-Landau approximation , 1995 .

[27]  CNRSJ.-P. EckmannD,et al.  The Time Dependent Amplitude Equation for the Swift-hohenberg Problem , 1990 .

[28]  I. V. Barashenkov,et al.  Dynamics of the parametrically driven NLS solitons beyond the onset of the oscillatory instability , 1999 .

[29]  Christopher K. R. T. Jones,et al.  Stability of travelling wave solutions of diffusive predator-prey systems , 1991 .

[30]  A. van Harten,et al.  On the validity of the Ginzburg-Landau equation , 1991 .

[31]  Andrey Kobyakov,et al.  Stability of strongly localized excitations in discrete media with cubic nonlinearity , 1998 .

[32]  Christopher Jones,et al.  Geometric singular perturbation theory , 1995 .

[33]  T. Kapitula Bifurcating bright and dark solitary waves for the perturbed cubic-quintic nonlinear Schrödinger equation , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[34]  Siam J. Math,et al.  THE EVANS FUNCTION AND GENERALIZED MELNIKOV INTEGRALS , 1998 .

[35]  A. Bose,et al.  Stability of the in-phase travelling wave solutions in a pair of coupled nerve fibers , 1995 .

[36]  M. Ablowitz,et al.  Nonlinear differential–difference equations and Fourier analysis , 1976 .

[37]  K. Mallick,et al.  Exponentially small splitting of separatrices, matching in the complex plane and Borel summation , 1993 .

[38]  Philip Holmes Spatial structure of time-periodic solutions of the Ginzburg-Landau equation☆ , 1986 .

[39]  Todd Kapitula,et al.  Instability mechanism for bright solitary-wave solutions to the cubic–quintic Ginzburg–Landau equation , 1998 .

[40]  Richard A. Silverman,et al.  Introductory Complex Analysis , 1968 .

[41]  R. Craster,et al.  Being stable and discrete , 2000 .

[42]  G. Schneider Global existence via Ginzburg-Landau formalism and pseudo-orbits of Ginzburg-Landau approximations , 1994 .

[43]  G. Schneider Error estimates for the Ginzburg-Landau approximation , 1994 .

[44]  Sergei F. Mingaleev,et al.  Effects of nonlocal dispersive interactions on self-trapping excitations , 1997 .

[45]  Arjen Doelman,et al.  Breaking the hidden symmetry in the Ginzburg-Landau equation , 1996 .

[46]  Joceline C Lega,et al.  Traveling hole solutions to the complex Ginzburg-Landau equation as perturbations of nonlinear Schro¨dinger dark solitons , 1997 .

[47]  Xiang-jun Chen,et al.  Effects of nonlinear gain on dark solitons , 1998 .

[48]  Todd Kapitula,et al.  Stability of bright solitary-wave solutions to perturbed nonlinear Schro , 1998 .

[49]  Kevin Zumbrun,et al.  The gap lemma and geometric criteria for instability of viscous shock profiles , 1998 .

[50]  Akira Hasegawa,et al.  Stabilization of dark-soliton transmission by means of nonlinear gain , 1997 .

[51]  Arjen Doelman,et al.  Periodic and quasi-periodic solutions of degenerate modulation equations , 1991 .

[52]  T. Kapitula Stability of weak shocks in λ-ω systems , 1991 .

[53]  R. Camassa,et al.  Nonadiabatic dynamics of dark solitons , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[54]  Robert S. MacKay,et al.  Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators , 1994 .

[55]  Aubry,et al.  Growth and decay of discrete nonlinear Schrodinger breathers interacting with internal modes or standing-wave phonons , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  T. Kapitula,et al.  Nearly real fronts in a Ginzburg–Landau equation , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[57]  J. Rubin,et al.  Stability, bifurcations and edge oscillations in standing pulse solutions to an inhomogeneous reaction-diffusion system , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[58]  R. Grimshaw Weakly Nonlocal Solitary Waves in a Singularly Perturbed Nonlinear Schrödinger Equation , 1995 .

[59]  Arjen Doelman,et al.  Traveling waves in the complex Ginzburg-Landau equation , 1993 .

[60]  On the Stability of Traveling Waves in Weighted L∞ Spaces , 1994 .

[61]  Transmission control of dark solitons by means of nonlinear gain. , 1995, Optics letters.

[62]  E. Pelinovsky,et al.  Breaking of stationary waves in nonlinear dispersive media , 1980 .

[63]  Todd Kapitula,et al.  Spatial dynamics of time periodic solutions for the Ginzburg-Landau equation , 1996 .

[64]  A. Aceves,et al.  Storage and steering of self-trapped discrete solitons in nonlinear waveguide arrays. , 1994, Optics letters.

[65]  Philip Holmes,et al.  Fronts, domain walls and pulses in a generalized Ginzburg-Landau equation , 1995, Proceedings of the Edinburgh Mathematical Society.

[66]  Keith Promislow,et al.  The Mechanism of the Polarizational Mode Instability in Birefringent Fiber Optics , 2000, SIAM J. Math. Anal..

[67]  L. Kramer,et al.  From dark solitons in the defocusing nonlinear Schro¨dinger to holes in the complex Ginzburg-Landau equation , 1994, patt-sol/9409003.

[68]  J. Rubin,et al.  Bifurcations and edge oscillations in the semiconductor Fabry-Pérot interferometer , 1997 .

[69]  Guido Schneider,et al.  Attractors for modulation equations on unbounded domains-existence and comparison , 1995 .

[70]  T. Kapitula Singular heteroclinic orbits for degenerate modulation equations , 1995 .

[71]  Björn Sandstede,et al.  Stability of multiple-pulse solutions , 1998 .

[72]  D. J. Kaup,et al.  Solitons as particles, oscillators, and in slowly changing media: a singular perturbation theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[73]  Pierre Collet,et al.  The time dependent amplitude equation for the Swift-Hohenberg problem , 1990 .

[74]  Yuri S. Kivshar,et al.  Discreteness-induced oscillatory instabilities of dark solitons , 1998, patt-sol/9811002.

[75]  P. C. Hohenberg,et al.  Fronts, pulses, sources and sinks in generalized complex Ginzberg-Landau equations , 1992 .

[76]  Mark J. Ablowitz,et al.  Numerical Chaos, Symplectic Integrators, and Exponentially Small Splitting Distances , 1993 .

[77]  R. Gardner,et al.  TRAVELING WAVES OF A PERTURBED DIFFUSION EQUATION ARISING IN A PHASE FIELD MODEL , 1990 .