Toward Millijoule-Level High-Power Ultrafast Thin-Disk Oscillators

SESAM modelocked thin-disk lasers have recently reached new frontiers and remain the leading technology in terms of average power and pulse energy, setting new performance levels for ultrafast oscillators. The milestones achieved seem to indicate that there are no major roadblocks ahead to achieve further scaling of modelocked oscillators to kilowatt output powers and millijoule output pulse energies. In this paper, we review the current state of the art and present the next steps toward future generations of millijoule, kilowatt-class ultrafast thin-disk oscillators.

[1]  T. Eidam,et al.  Megawatt-scale average-power ultrashort pulses in an enhancement cavity. , 2014, Optics letters.

[2]  Erich P. Ippen,et al.  Two-photon absorption in semiconductor saturable absorber mirrors , 1999 .

[3]  Thomas Metzger,et al.  300 W Picosecond Thin-Disk Regenerative Amplifier at 10 kHz Repetition Rate , 2013 .

[4]  Ursula Keller,et al.  Analytical design of double-chirped mirrors with custom-tailored dispersion characteristics , 1999 .

[5]  Matthias Golling,et al.  Femtosecond thin-disk laser with 141 W of average power. , 2010, Optics letters.

[6]  G. Steinmeyer,et al.  Method for Computing the Nonlinear Refractive Index via Keldysh Theory , 2010, IEEE Journal of Quantum Electronics.

[7]  Ivo Zawischa,et al.  Mode-locked Yb:YAG thin-disk oscillator with 41 µJ pulse energy at 145 W average infrared power and high power frequency conversion. , 2012, Optics express.

[8]  L. A. Lompré,et al.  Multiple-harmonic conversion of 1064 nm radiation in rare gases , 1988 .

[9]  J Brons,et al.  High-power Kerr-lens mode-locked Yb:YAG thin-disk oscillator in the positive dispersion regime. , 2012, Optics letters.

[10]  C. Saraceno,et al.  Pulse compression of a high-energy thin-disk laser at 100 W of average power using an Ar-filled Kagome-type HC-PCF , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[11]  Adolf Giesen,et al.  Scalable concept for diode-pumped high-power solid-state lasers , 1994 .

[12]  S. Saxena TRANSPORT PROPERTIES OF GASES AND GASEOUS MIXTURES AT HIGH TEMPERATURES. , 1971 .

[13]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[14]  B. Jaeggi,et al.  High-throughput and high-precision laser micromachining with ps-pulses in synchronized mode with a fast polygon line scanner , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[15]  Matthias Golling,et al.  SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScO3 thin disk laser to 23 W and 235 fs , 2012, Other Conferences.

[16]  F. Krausz,et al.  Optical breakdown of multilayer thin-films induced by ultrashort pulses at MHz repetition rates. , 2013, Optics express.

[17]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[18]  Thomas Graf,et al.  Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors. , 2012, Optics letters.

[19]  T. Dekorsy,et al.  Numerical analysis of a sub-picosecond thin-disk laser oscillator with active multipass geometry showing a variation of pulse duration within one round trip , 2010 .

[20]  Lawrence Shah,et al.  Micromachining with a 50 W, 50 muJ, subpicosecond fiber laser system. , 2006, Optics express.

[21]  Bernard Prade,et al.  Determination of the inertial contribution to the nonlinear refractive index of air, N 2 , and O 2 by use of unfocused high-intensity femtosecond laser pulses , 1997 .

[22]  D. Miller,et al.  Solid-state low-loss intracavity saturable absorber for Nd:YLF lasers: an antiresonant semiconductor Fabry-Perot saturable absorber. , 1992, Optics letters.

[23]  T. Südmeyer,et al.  16.2-W average power from a diode-pumped femtosecond Yb:YAG thin disk laser. , 2000, Optics letters.

[24]  K. Weingarten,et al.  Semiconductor saturable absorber mirror structures with low saturation fluence , 2005 .

[25]  Tina Gottwald,et al.  Recent developments in high power thin disk lasers at TRUMPF Laser , 2013, Optics/Photonics in Security and Defence.

[26]  F. Kärtner,et al.  Stabilization of solitonlike pulses with a slow saturable absorber. , 1995, Optics letters.

[27]  Thomas Graf,et al.  Passively mode-locked Yb 3+ :Sc 2 SiO 5 thin-disk laser , 2012 .

[28]  J. Rothhardt,et al.  A 325-W-Average-Power Fiber CPA System Delivering Sub-400 fs Pulses , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[29]  Ursula Keller,et al.  Femtosecond laser oscillators for high-field science , 2008 .

[30]  V. L. Kalashnikov,et al.  High-power 200 fs Kerr-lens mode-locked Yb:YAG thin-disk oscillator. , 2011, Optics letters.

[31]  U. Keller,et al.  New regime of inverse saturable absorption for self-stabilizing passively mode-locked lasers , 2005 .

[32]  J. Rothhardt,et al.  Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system. , 2007, Optics letters.

[33]  Thomas Graf,et al.  1.1 kW average output power from a thin-disk multipass amplifier for ultrashort laser pulses. , 2013, Optics letters.

[34]  Erich P. Ippen,et al.  Suppression of Q-switched mode locking and break-up into multiple pulses by inverse saturable absorption , 2000 .

[35]  James Fujimoto,et al.  Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers. , 2003, Optics express.

[36]  Matthias Golling,et al.  Pulse energy scaling to 5 μJ from a femtosecond thin disk laser , 2006 .

[37]  Sandrine Ricaud,et al.  Comparison of picosecond and femtosecond laser ablation for surface engraving of metals and semiconductors , 2012, LASE.

[38]  C. Saraceno,et al.  Phase-stabilization of the carrier-envelope-offset frequency of a SESAM modelocked thin disk laser. , 2013, Optics express.

[39]  Katsumi Midorikawa,et al.  High-Pulse-Energy Yb:YAG Thin Disk Mode-Locked Oscillator for Intra-Cavity High Harmonic Generation , 2013 .

[40]  Winkler,et al.  Heating by optical absorption and the performance of interferometric gravitational-wave detectors. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[41]  A. Giesen,et al.  Fifteen Years of Work on Thin-Disk Lasers: Results and Scaling Laws , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[42]  Fetah Benabid,et al.  Beam delivery and pulse compression to sub-50 fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. , 2013, Optics express.

[43]  Marcel Schultze,et al.  Passively mode-locked Yb:KLu(WO4)2 thin-disk oscillator operated in the positive and negative dispersion regime. , 2008, Optics letters.

[44]  M. Golling,et al.  SESAMs for High-Power Oscillators: Design Guidelines and Damage Thresholds , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  H. Hoffmann,et al.  Compact diode-pumped 1.1 kW Yb:YAG Innoslab femtosecond amplifier. , 2010, Optics letters.

[46]  Tino Eidam,et al.  Power scaling of a high-repetition-rate enhancement cavity. , 2010, Optics letters.

[47]  P. Georges,et al.  Femtosecond Yb:CaGdAlO4 thin-disk oscillator. , 2012, Optics letters.

[48]  Matthias Golling,et al.  Ultrafast thin-disk laser with 80 μJ pulse energy and 242 W of average power. , 2014, Optics letters.

[49]  Ferenc Krausz,et al.  Large-mode enhancement cavities. , 2013, Optics express.

[50]  Kin Seng Lai,et al.  Near fundamental mode 1.1 kW Yb:YAG thin-disk laser. , 2013, Optics letters.

[51]  Tino Eidam,et al.  530 W, 1.3 mJ, four-channel coherently combined femtosecond fiber chirped-pulse amplification system. , 2013, Optics letters.

[52]  Rüdiger Paschotta,et al.  Passive mode locking with slow saturable absorbers , 2001 .

[53]  T. Südmeyer,et al.  Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level. , 2008, Optics express.

[54]  Patrick Georges,et al.  Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at ultra-low repetition rate , 2003 .

[55]  K. Petermann,et al.  High-power ultrafast thin disk laser oscillators and their potential for sub-100-femtosecond pulse generation , 2009 .

[56]  Matthias Golling,et al.  62-fs Pulses from a SESAM Modelocked Yb:CALGO Thin Disk Laser , 2013 .

[57]  U. Keller,et al.  Optical nonlinearity in low-temperature-grown GaAs: Microscopic limitations and optimization strategies , 1999 .

[58]  E. Mottay,et al.  Transform-limited 100 microJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor. , 2008, Optics letters.

[59]  M. Golling,et al.  Sub-100 femtosecond pulses from a SESAM modelocked thin disk laser , 2012 .

[60]  Matthias Golling,et al.  SESAMs for high-power femtosecond modelocking: power scaling of an Yb:LuScO₃ thin disk laser to 23 W and 235 fs. , 2011, Optics express.

[61]  Matthias Golling,et al.  Cutting-Edge High-Power Ultrafast Thin Disk Oscillators , 2013 .

[62]  C. Saraceno,et al.  Yb-doped mixed sesquioxides for ultrashort pulse generation in the thin disk laser setup , 2013 .

[63]  Tino Eidam,et al.  Femtosecond fiber CPA system emitting 830 W average output power. , 2010, Optics letters.

[64]  J Brons,et al.  High-dispersive mirrors for high power applications. , 2012, Optics express.

[65]  Sascha Weiler,et al.  Subpicosecond thin-disk laser oscillator with pulse energies of up to 25.9 microjoules by use of an active multipass geometry. , 2008, Optics express.

[66]  R. Kienberger,et al.  What will it take to observe processes in 'real time'? , 2014, Nature Photonics.

[67]  Thomas Graf,et al.  Passively mode-locked Yb3+:Sc2SiO5 thin-disk laser. , 2012, Optics letters.

[68]  Donald R. Herriott,et al.  Folded Optical Delay Lines , 1965 .

[69]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[70]  Ursula Keller,et al.  Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight , 2010 .

[71]  V. Kalashnikov,et al.  120 W, 4 μJ from a purely Kerr-lens mode-locked Yb:YAG thin-disk oscillator , 2013 .

[72]  C. Saraceno,et al.  Self-referenceable frequency comb from an ultrafast thin disk laser. , 2012, Optics express.

[73]  Matthias Golling,et al.  275 W average output power from a femtosecond thin disk oscillator operated in a vacuum environment. , 2012, Optics express.

[74]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[75]  K. Petermann,et al.  Thermal analysis and efficient high power continuous-wave and mode-locked thin disk laser operation of Yb-doped sesquioxides , 2011 .

[76]  K. Osvay,et al.  Measurement of pressure dependent nonlinear refractive index of inert gases , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[77]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[78]  Jens Limpert,et al.  66 W average power from a microjoule-class sub-100 fs fiber oscillator. , 2012, Optics letters.

[79]  F. Balembois,et al.  Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate. , 2003, Optics letters.

[80]  Ursula Keller,et al.  Frontiers in passively mode-locked high-power thin disk laser oscillators. , 2012, Optics express.

[81]  U. Keller,et al.  60-fs pulses from a diode-pumped Nd:glass laser. , 1997, Optics letters.

[82]  V. Magni,et al.  Multielement stable resonators containing a variable lens , 1987 .

[83]  Matthias Golling,et al.  SESAM mode-locked Yb:CaGdAlO4 thin disk laser with 62 fs pulse generation. , 2013, Optics letters.

[84]  T. Fan,et al.  Room-temperature diode-pumped Yb:YAG laser. , 1991, Optics letters.

[85]  Günter Huber,et al.  Rare-earth-doped sesquioxides , 2000 .