$O(N^3)$ Measurement Cost for Variational Quantum Eigensolver on Molecular Hamiltonians

Variational quantum eigensolver (VQE) is a promising algorithm for near-term quantum machines. It can be used to estimate the ground state energy of a molecule by performing separate measurements of <inline-formula><tex-math notation="LaTeX">$O(N^4)$</tex-math></inline-formula> terms. This quartic scaling appears to be a significant obstacle to practical applications. However, we note that it empirically reduces to <inline-formula><tex-math notation="LaTeX">$O(N^3)$</tex-math></inline-formula> when we partition the terms into linear-sized commuting families that can be measured simultaneously. We confirm these empirical observations by studying the MIN-COMMUTING-PARTITION problem at the level of the fermionic Hamiltonian and its encoding into qubits. Moreover, we provide a fast, precomputable procedure for creating linearly sized commuting partitions by solving a round-robin scheduling problem via flow networks. In addition, we demonstrate how to construct the quantum circuits necessary for simultaneous measurement, and we discuss the statistical implication of simultaneous measurement. Our results are experimentally validated by a ground state estimation of deuteron with low shot budget on a 20-qubit IBM machine.

[1]  L. Landau,et al.  Fermionic quantum computation , 2000 .

[2]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[3]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[4]  D. R. Fulkerson,et al.  Maximal Flow Through a Network , 1956 .

[5]  Henry Hoffmann,et al.  Optimized Compilation of Aggregated Instructions for Realistic Quantum Computers , 2019, ASPLOS.

[6]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[7]  Alexei Y. Kitaev,et al.  Quantum measurements and the Abelian Stabilizer Problem , 1995, Electron. Colloquium Comput. Complex..

[8]  Aleksander Madry,et al.  Navigating Central Path with Electrical Flows: From Flows to Matchings, and Back , 2013, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[9]  Ivano Tavernelli,et al.  Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions , 2018, Physical Review A.

[10]  M. Hastings,et al.  Gate count estimates for performing quantum chemistry on small quantum computers , 2013, 1312.1695.

[11]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[12]  Tzu-Ching Yen,et al.  Measuring all compatible operators in one series of single-qubit measurements using unitary transformations. , 2019, Journal of chemical theory and computation.

[13]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[14]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[15]  J. F. Bell Linear Least Squares Computations , 1989 .

[16]  I. G. Ryabinkin,et al.  Revising measurement process in the variational quantum eigensolver: Is it possible to reduce the number of separately measured operators? , 2018, 1810.11602.

[17]  Hauke Paulsen,et al.  Density Functional Theory Calculations for Spin Crossover Complexes , 2004 .

[18]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[19]  K. B. Whaley,et al.  Generalized Unitary Coupled Cluster Wave functions for Quantum Computation. , 2018, Journal of chemical theory and computation.

[20]  P. Love,et al.  The Bravyi-Kitaev transformation for quantum computation of electronic structure. , 2012, The Journal of chemical physics.

[21]  Narsingh Deo,et al.  1 On One-factorization of Complete 3-Uniform Hypergraphs , 2003 .

[22]  Hiroshi Sekigawa,et al.  A new algorithm for producing quantum circuits using KAK decompositions , 2005, Quantum Inf. Comput..

[23]  R. Bartlett,et al.  Coupled-cluster theory in quantum chemistry , 2007 .

[24]  Sabre Kais,et al.  Decomposition of Unitary Matrices for Finding Quantum Circuits , 2010, The Journal of chemical physics.

[25]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[26]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[27]  Daisuke Shiomi,et al.  Quantum Chemistry on Quantum Computers: A Method for Preparation of Multiconfigurational Wave Functions on Quantum Computers without Performing Post-Hartree–Fock Calculations , 2018, ACS central science.

[28]  F. Chong,et al.  Term Grouping and Travelling Salesperson for Digital Quantum Simulation , 2020, 2001.05983.

[29]  R. Pooser,et al.  Cloud Quantum Computing of an Atomic Nucleus. , 2018, Physical Review Letters.

[30]  U. Seyfarth,et al.  Cyclic Mutually Unbiased Bases and Quantum Public-Key Encryption , 2013, 1907.02726.

[31]  Nathan Wiebe,et al.  Efficient and noise resilient measurements for quantum chemistry on near-term quantum computers , 2019, npj Quantum Information.

[32]  Edith Cohen,et al.  Approximate max flow on small depth networks , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[33]  Michele Mosca,et al.  Pauli Partitioning with Respect to Gate Sets. , 2019, 1907.07859.

[34]  Ching-Yi Lai,et al.  Depth reduction for quantum Clifford circuits through Pauli measurements. , 2018, 1805.12082.

[35]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[36]  Jonathan Romero,et al.  Low-depth circuit ansatz for preparing correlated fermionic states on a quantum computer , 2018, Quantum Science and Technology.

[37]  Xiao Wang,et al.  Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. , 2017, Journal of chemical theory and computation.

[38]  Ben Moseley,et al.  Bayesian optimisation for variational quantum eigensolvers , 2018 .

[39]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[40]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[41]  H. Eyring The Activated Complex in Chemical Reactions , 1935 .

[42]  Tzu-Ching Yen,et al.  Unitary partitioning approach to the measurement problem in the Variational Quantum Eigensolver method. , 2019, Journal of chemical theory and computation.

[43]  Michael Nielsen,et al.  Quantum computing for the very curious , 2019 .

[44]  Scott Aaronson,et al.  Improved Simulation of Stabilizer Circuits , 2004, ArXiv.

[45]  M. Girvin,et al.  Quantum Simulation of Gauge Theories and Inflation , 2019, Journal Club for Condensed Matter Physics.

[46]  Gustavo E. Scuseria,et al.  A quantitative study of the scaling properties of the Hartree–Fock method , 1995 .

[47]  William J. Zeng,et al.  A Practical Quantum Instruction Set Architecture , 2016, ArXiv.

[48]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[49]  P. Murdin Pauli Exclusion Principle , 2000 .

[50]  Metod Saniga,et al.  On the Pauli graphs on N-qudits , 2007, Quantum Inf. Comput..

[51]  Brett Stevens,et al.  Hamiltonian decompositions of complete k-uniform hypergraphs , 2010, Discret. Math..

[52]  Frederic T. Chong,et al.  Quantum Computing for Computer Architects (Synthesis Lectures on Computer Architecture) , 2006 .

[53]  Travis S. Humble,et al.  Quantum chemistry as a benchmark for near-term quantum computers , 2019, npj Quantum Information.

[54]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[55]  Stephen Gray,et al.  Accounting for errors in quantum algorithms via individual error reduction , 2018, npj Quantum Information.

[56]  Vladyslav Verteletskyi,et al.  Measurement optimization in the variational quantum eigensolver using a minimum clique cover. , 2019, The Journal of chemical physics.

[57]  Kedar S. Ranade,et al.  Construction of mutually unbiased bases with cyclic symmetry for qubit systems , 2011, 1106.3515.

[58]  G. Scuseria,et al.  Comparison of coupled-cluster methods which include the effects of connected triple excitations , 1990 .

[59]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[60]  Anthony Laing,et al.  Direct dialling of Haar random unitary matrices , 2015, 1506.06220.

[61]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[62]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1990, BIT.

[63]  Henry Hoffmann,et al.  Partial Compilation of Variational Algorithms for Noisy Intermediate-Scale Quantum Machines , 2019, MICRO.

[64]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[65]  J. Schwinger UNITARY OPERATOR BASES. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[66]  R. Cleve,et al.  Quantum algorithms revisited , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[67]  Chi-Kwong Li,et al.  DECOMPOSITION OF UNITARY MATRICES AND QUANTUM GATES , 2012, 1210.7366.

[68]  Giacomo Nannicini,et al.  Performance of hybrid quantum/classical variational heuristics for combinatorial optimization , 2018, Physical review. E.

[69]  T. Monz,et al.  Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator , 2018, Physical Review X.

[70]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[71]  Andreas Klappenecker,et al.  Constructions of Mutually Unbiased Bases , 2003, International Conference on Finite Fields and Applications.

[72]  Navin Khaneja,et al.  Cartan Decomposition of SU(2^n), Constructive Controllability of Spin systems and Universal Quantum Computing , 2000, quant-ph/0010100.

[73]  Satish Rao,et al.  A new approach to computing maximum flows using electrical flows , 2013, STOC '13.

[74]  Andrew W. Cross,et al.  Quantum optimization using variational algorithms on near-term quantum devices , 2017, Quantum Science and Technology.

[75]  Dmitri Maslov,et al.  Ground-state energy estimation of the water molecule on a trapped ion quantum computer , 2019, ArXiv.

[76]  Frederic T. Chong,et al.  Quantum Computing for Computer Architects , 2006, Synthesis Lectures on Computer Architecture.

[77]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[78]  W. Heitler The Principles of Quantum Mechanics , 1947, Nature.

[79]  U. Tamm,et al.  Applications of Baranyai's Theorem in Information Theory , 2007 .

[80]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[81]  Neil J. Ross Optimal ancilla-free Pauli+V approximation of z-rotations , 2014, ArXiv.

[82]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[83]  Ryan Babbush,et al.  Barren plateaus in quantum neural network training landscapes , 2018, Nature Communications.

[84]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[85]  Matthew B. Hastings,et al.  Improving quantum algorithms for quantum chemistry , 2014, Quantum Inf. Comput..

[86]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[87]  Donggu Kang,et al.  Flow Rounding , 2015, ArXiv.

[88]  William M. Kirby,et al.  Measurement reduction in variational quantum algorithms , 2019, Physical Review A.

[89]  J. Whitfield,et al.  Simulation of electronic structure Hamiltonians using quantum computers , 2010, 1001.3855.